The meeting was called to order at 1:03 p.m. The following Model Development Working Group (MDWG) members were in attendance:

Joe Fultz, Chair – Grand River Dam Authority  
Nate Morris, Vice Chair – Empire District Electric  
Nathan McNeil – Midwest Energy  
Scott Schichtl – Arkansas Electric Cooperative  
Reené Miranda – Southwestern Public Service  
Dustin Betz – Nebraska Public Power District  
Derek Brown – Westar Energy  
Mike Clifton – Oklahoma Gas & Electric  
Brian Wilson – Kansas City Power & Light  
John Boshears – City Utilities of Springfield  
Jason Shook – GDS Associates

SPP Staff in attendance included Anthony Cook (Secretary), Brandon Hentschel, Mitch Jackson, Seth Mayfield, Zack Bearden, Scott Jordan, Daniel Harless, James Bailey, Austin Collier, and John Mills.

The following guests were also in attendance:  
Jason Bentz – (Proxy for Scott Rainbolt) American Electric Power  
Alan Burbach – Lincoln Electric System (LES)  
Alex Mucha – Oklahoma Municipal Power Authority  
Chandler Brown –  
Dave Macey – City of Independence  
Gimod Olapurayil – ITC Great Plains  
Jerry Bradshaw – City Utilities of Springfield  
John Mayhan – Omaha Public Power District (OPPD)  
Jon Shipman – Omaha Public Power District (OPPD)  
Liam Stringham – Sunflower Electric Power Corporation  
Martin Green – Grand River Dam Authority  
Noumvi Ghomsi – Public Service Commission of Missouri  
Peter Howard - Kansas City Power & Light  
Jeff Stewart – Lafayette Utilities  
Aravind Chellappa – (Proxy for Reené Miranda) Southwestern Public Service

Meeting Agenda  
There was not an agenda prepared for the meeting.
Anthony Cook asked the group if there were any issues that hadn’t been addressed which would prevent the group from voting to finalize the powerflow models. Brian Wilson stated that he was fine with as long as the St. Joe to Cooper line is restored in the models as needed. Anthony stated that the issue had been corrected. He also stated that the additional corrections submitted by the members are local corrections and would not greatly affect the overall powerflow. Nate Morris asked if HPILS is in the latest posted models. Anthony stated that the members were directed to submit updated HPILS load, topology and generation per the letter from Noman Williams. Nate asked if the HPILS loads went through the AQ process. Anthony stated he was told that the HPILS study served as a “Super” AQ study and therefore individual loads did not necessarily go through the AQ process. With no other comments, Joe Fultz asked for a motion to finalize the models. Jason Shook motioned to finalize the 2014 Series MDWG Powerflow models with the submitted corrections added during the review period. Reené Miranda seconded the motion. The vote is 11 yes, 1 no. Nate Morris with Empire voted no. His explanation is below:

Mr. Chair & Secretary,

Here is the reasoning behind Empire’s opposing vote on finalization of the 2014 MDWG model set:

Empire does not feel that the correct avenues were implemented for inclusion of the HPILS related loads, transmission projects, and generation. This type study should have been conducted separate of SPP’s previously scheduled work so as not to disrupt the ongoing model development nor cause disruption of the results for load & project development. The manner in which this study was rushed through gave rise to more questions than answers provided and as a consequence members did not have adequate time to review the consistency of the models. The items that remain unanswered/ambiguous as to the integrity of the 2014 Model set are as follows:

1. SPP has yet to tabulate what additional transfers needed to force the models into solving
2. What & where were the additional loads added between February and the posting of Pass 8 models?
3. What transmission projects were placed in the models to serve the newly added/inserted loads?
4. Why were the loads added between Pass 6 and Pass 8 (vs. the previous 6 passes)? Members were not directed by TWG to include them so why were special permissions & additional passes granted so that these loads could be added? If these loads were consistent with the 50/50 projections, why were these not included in previous passes for the 2014 model build? In the discussion at the Feb TWG meeting, the MDWG was directed to notate and label the ALREADY present HPILS loads within the models, which stands contrary to the mention of the MDWG being directed to include all HPILS models and extending the number of passes on the 2014 model set.
5. The AQ process having been totally bypassed in this study raises questions as to how future loads/generation/transmission projects are to be included in future model builds. If any loads have not been vetted through the AQ process, how did these loads make it into the models, with assumed integration into the subsequent ITP models? There was mention that the HPILS was a “Super AQ” study. There is no such thing as a “Super AQ” study and therefore this is an invalid explanation.

6. What amount and where has generation been added to the models to help serve this unknown amount of additional load? Could these additional generators add or mask subsequent projects needed as a direct result of their inclusion within the models? In previous years, outer year models have been supplemented with fictitious generation in an attempt to cover load. That is understandable but it is unknown at this time how these required generators related to HPILS will/will not be integrated into subsequent models (i.e. – ITP models)

7. How will stability studies be treated with these new machines & unknown additional projects and how will the effects of said generators be viewed in the results? What ensuing evaluation will be made to determine the positive or negative impacts these generators will have on the models’ dynamic responses? The members were simply informed that assumptions would be applied as in past dynamic simulations. Due to the fact that it has not been tabulated as to the amount of additional generation was added, this was too general of an explanation.

Due to the above ambiguities and the excessive unknowns that are present in the model set, Empire could not support finalizing the model set.

Regards,

Nate Morris, P.E.
Manager of Systems Planning & Protection

2014 Series Short Circuit Model Status:
Anthony stated that SPP has received little feedback on the posted Short Circuit models. He asked if the group was prepared to finalize those as well. With no comments, Joe asked for a motion. Scott Schichtl motioned to finalize the 2014 Series MDWG Short Circuit models. Reené Miranda seconded the motion. The vote is 11 yes, 0 no, 1 abstain. Nate Morris with Empire abstained.

TPL-001-04-R1:
Scott Jordan gave an overview of the requirements for the new NERC TPL-001-04 standard. He described adding five worksheets to the data submittal workbook to help with compliance needs for Requirements 1 & 7. He stated that SPP staff will add wording to the MDWG Procedural Manual and submit for approval from the group for the May MDWG Meeting. Scott asked the members to submit known outages so that he can get them into the 2014 Series Dynamics model set. Reené Miranda asked if the TO will be held accountable if an outage is planned for in the models but doesn’t end up being outaged in real-time. Scott stated he would look into this.

(Attachment 1 - NERC_TPL-001-04_R1.pdf)
AI: SPP Staff to add wording to the MDWG Procedure Manual for TPL-001-04-R1.

AI: Scott Jordan will discuss with SPP Compliance if TOs will be held accountable for modeling outages that don't happen in real-time.

Adjourn Meeting
   With no further business to discuss, Scott Schichtl motioned to adjourn the meeting. Reené Miranda seconded the motion. The MDWG adjourned at 2:27 p.m.

Respectfully submitted,

Anthony Cook
SPP Staff Secretary
A. Introduction

1. Title: Transmission System Planning Performance Requirements
2. Number: TPL-001-4
3. Purpose: Establish Transmission system planning performance requirements within the planning horizon to develop a Bulk Electric System (BES) that will operate reliably over a broad spectrum of System conditions and following a wide range of probable Contingencies.
4. Applicability:
   4.1. Functional Entity
      4.1.1. Planning Coordinator.
      4.1.2. Transmission Planner.

5. Effective Date: Requirements R1 and R7 as well as the definitions shall become effective on the first day of the first calendar quarter, 12 months after applicable regulatory approval. In those jurisdictions where regulatory approval is not required, Requirements R1 and R7 become effective on the first day of the first calendar quarter, 12 months after Board of Trustees adoption or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities.

Except as indicated below, Requirements R2 through R6 and Requirement R8 shall become effective on the first day of the first calendar quarter, 24 months after applicable regulatory approval. In those jurisdictions where regulatory approval is not required, all requirements, except as noted below, go into effect on the first day of the first calendar quarter, 24 months after Board of Trustees adoption or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities.

For 84 calendar months beginning the first day of the first calendar quarter following applicable regulatory approval, or in those jurisdictions where regulatory approval is not required on the first day of the first calendar quarter 84 months after Board of Trustees adoption or as otherwise made effective pursuant to the laws applicable to such ERO governmental authorities, Corrective Action Plans applying to the following categories of Contingencies and events identified in TPL-001-4, Table 1 are allowed to include Non-Consequential Load Loss and curtailment of Firm Transmission Service (in accordance with Requirement R2, Part 2.7.3.) that would not otherwise be permitted by the requirements of TPL-001-4:

- P1-2 (for controlled interruption of electric supply to local network customers connected to or supplied by the Faulted element)
- P1-3 (for controlled interruption of electric supply to local network customers connected to or supplied by the Faulted element)
- P2-1
- P2-2 (above 300 kV)
- P2-3 (above 300 kV)
- P3-1 through P3-5
- P4-1 through P4-5 (above 300 kV)
- P5 (above 300 kV)
B. Requirements

R1. Each Transmission Planner and Planning Coordinator shall maintain System models within its respective area for performing the studies needed to complete its Planning Assessment. The models shall use data consistent with that provided in accordance with the MOD-010 and MOD-012 standards, supplemented by other sources as needed, including items represented in the Corrective Action Plan, and shall represent projected System conditions. This establishes Category P0 as the normal System condition in Table 1. [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]

1.1. System models shall represent:
   1.1.1. Existing Facilities
   1.1.2. Known outage(s) of generation or Transmission Facility(ies) with a duration of at least six months.
   1.1.3. New planned Facilities and changes to existing Facilities
   1.1.4. Real and reactive Load forecasts
   1.1.5. Known commitments for Firm Transmission Service and Interchange
   1.1.6. Resources (supply or demand side) required for Load

R2. Each Transmission Planner and Planning Coordinator shall prepare an annual Planning Assessment of its portion of the BES. This Planning Assessment shall use current or qualified past studies (as indicated in Requirement R2, Part 2.6), document assumptions, and document summarized results of the steady state analyses, short circuit analyses, and Stability analyses. [Violation Risk Factor: High] [Time Horizon: Long-term Planning]

2.1. For the Planning Assessment, the Near-Term Transmission Planning Horizon portion of the steady state analysis shall be assessed annually and be supported by current annual studies or qualified past studies as indicated in Requirement R2, Part 2.6. Qualifying studies need to include the following conditions:

2.1.1. System peak Load for either Year One or year two, and for year five.
2.1.2. System Off-Peak Load for one of the five years.
2.1.3. P1 events in Table 1, with known outages modeled as in Requirement R1, Part 1.1.2, under those System peak or Off-Peak conditions when known outages are scheduled.
2.1.4. For each of the studies described in Requirement R2, Parts 2.1.1 and 2.1.2, sensitivity case(s) shall be utilized to demonstrate the impact of changes to the basic assumptions used in the model. To accomplish this, the sensitivity analysis in the Planning Assessment must vary one or more of the following conditions by a sufficient amount to stress the System within a range of credible conditions that demonstrate a measurable change in System response:
   - Real and reactive forecasted Load.
   - Expected transfers.
   - Expected in service dates of new or modified Transmission Facilities.
   - Reactive resource capability.
   - Generation additions, retirements, or other dispatch scenarios.
- Controllable Loads and Demand Side Management.
- Duration or timing of known Transmission outages.

2.1.5. When an entity’s spare equipment strategy could result in the unavailability of major Transmission equipment that has a lead time of one year or more (such as a transformer), the impact of this possible unavailability on System performance shall be studied. The studies shall be performed for the P0, P1, and P2 categories identified in Table 1 with the conditions that the System is expected to experience during the possible unavailability of the long lead time equipment.

2.2. For the Planning Assessment, the Long-Term Transmission Planning Horizon portion of the steady state analysis shall be assessed annually and be supported by the following annual current study, supplemented with qualified past studies as indicated in Requirement R2, Part 2.6:

2.2.1. A current study assessing expected System peak Load conditions for one of the years in the Long-Term Transmission Planning Horizon and the rationale for why that year was selected.

2.3. The short circuit analysis portion of the Planning Assessment shall be conducted annually addressing the Near-Term Transmission Planning Horizon and can be supported by current or past studies as qualified in Requirement R2, Part 2.6. The analysis shall be used to determine whether circuit breakers have interrupting capability for Faults that they will be expected to interrupt using the System short circuit model with any planned generation and Transmission Facilities in service which could impact the study area.

2.4. For the Planning Assessment, the Near-Term Transmission Planning Horizon portion of the Stability analysis shall be assessed annually and be supported by current or past studies as qualified in Requirement R2, Part 2.6. The following studies are required:

2.4.1. System peak Load for one of the five years. System peak Load levels shall include a Load model which represents the expected dynamic behavior of Loads that could impact the study area, considering the behavior of induction motor Loads. An aggregate System Load model which represents the overall dynamic behavior of the Load is acceptable.

2.4.2. System Off-Peak Load for one of the five years.

2.4.3. For each of the studies described in Requirement R2, Parts 2.4.1 and 2.4.2, sensitivity case(s) shall be utilized to demonstrate the impact of changes to the basic assumptions used in the model. To accomplish this, the sensitivity analysis in the Planning Assessment must vary one or more of the following conditions by a sufficient amount to stress the System within a range of credible conditions that demonstrate a measurable change in performance:

- Load level, Load forecast, or dynamic Load model assumptions.
- Expected transfers.
- Expected in service dates of new or modified Transmission Facilities.
- Reactive resource capability.
- Generation additions, retirements, or other dispatch scenarios.
2.5. For the Planning Assessment, the Long-Term Transmission Planning Horizon portion of the Stability analysis shall be assessed to address the impact of proposed material generation additions or changes in that timeframe and be supported by current or past studies as qualified in Requirement R2, Part 2.6 and shall include documentation to support the technical rationale for determining material changes.

2.6. Past studies may be used to support the Planning Assessment if they meet the following requirements:

2.6.1. For steady state, short circuit, or Stability analysis: the study shall be five calendar years old or less, unless a technical rationale can be provided to demonstrate that the results of an older study are still valid.

2.6.2. For steady state, short circuit, or Stability analysis: no material changes have occurred to the System represented in the study. Documentation to support the technical rationale for determining material changes shall be included.

2.7. For planning events shown in Table 1, when the analysis indicates an inability of the System to meet the performance requirements in Table 1, the Planning Assessment shall include Corrective Action Plan(s) addressing how the performance requirements will be met. Revisions to the Corrective Action Plan(s) are allowed in subsequent Planning Assessments but the planned System shall continue to meet the performance requirements in Table 1. Corrective Action Plan(s) do not need to be developed solely to meet the performance requirements for a single sensitivity case analyzed in accordance with Requirements R2, Parts 2.1.4 and 2.4.3. The Corrective Action Plan(s) shall:

2.7.1. List System deficiencies and the associated actions needed to achieve required System performance. Examples of such actions include:

- Installation, modification, retirement, or removal of Transmission and generation Facilities and any associated equipment.
- Installation, modification, or removal of Protection Systems or Special Protection Systems
- Installation or modification of automatic generation tripping as a response to a single or multiple Contingency to mitigate Stability performance violations.
- Installation or modification of manual and automatic generation runback/tripping as a response to a single or multiple Contingency to mitigate steady state performance violations.
- Use of Operating Procedures specifying how long they will be needed as part of the Corrective Action Plan.
- Use of rate applications, DSM, new technologies, or other initiatives.

2.7.2. Include actions to resolve performance deficiencies identified in multiple sensitivity studies or provide a rationale for why actions were not necessary.

2.7.3. If situations arise that are beyond the control of the Transmission Planner or Planning Coordinator that prevent the implementation of a Corrective Action Plan in the required timeframe, then the Transmission Planner or Planning Coordinator is permitted to utilize Non-Consequential Load Loss and curtailment of Firm Transmission Service to correct the situation that would normally not be permitted in Table 1, provided that the Transmission Planner
or Planning Coordinator documents that they are taking actions to resolve the situation. The Transmission Planner or Planning Coordinator shall document the situation causing the problem, alternatives evaluated, and the use of Non-Consequential Load Loss or curtailment of Firm Transmission Service.

2.7.4. Be reviewed in subsequent annual Planning Assessments for continued validity and implementation status of identified System Facilities and Operating Procedures.

2.8. For short circuit analysis, if the short circuit current interrupting duty on circuit breakers determined in Requirement R2, Part 2.3 exceeds their Equipment Rating, the Planning Assessment shall include a Corrective Action Plan to address the Equipment Rating violations. The Corrective Action Plan shall:

2.8.1. List System deficiencies and the associated actions needed to achieve required System performance.

2.8.2. Be reviewed in subsequent annual Planning Assessments for continued validity and implementation status of identified System Facilities and Operating Procedures.

R3. For the steady state portion of the Planning Assessment, each Transmission Planner and Planning Coordinator shall perform studies for the Near-Term and Long-Term Transmission Planning Horizons in Requirement R2, Parts 2.1, and 2.2. The studies shall be based on computer simulation models using data provided in Requirement R1. [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]

3.1. Studies shall be performed for planning events to determine whether the BES meets the performance requirements in Table 1 based on the Contingency list created in Requirement R3, Part 3.4.

3.2. Studies shall be performed to assess the impact of the extreme events which are identified by the list created in Requirement R3, Part 3.5.

3.3. Contingency analyses for Requirement R3, Parts 3.1 & 3.2 shall:

3.3.1. Simulate the removal of all elements that the Protection System and other automatic controls are expected to disconnect for each Contingency without operator intervention. The analyses shall include the impact of subsequent:

3.3.1.1. Tripping of generators where simulations show generator bus voltages or high side of the generation step up (GSU) voltages are less than known or assumed minimum generator steady state or ride through voltage limitations. Include in the assessment any assumptions made.

3.3.1.2. Tripping of Transmission elements where relay loadability limits are exceeded.

3.3.2. Simulate the expected automatic operation of existing and planned devices designed to provide steady state control of electrical system quantities when such devices impact the study area. These devices may include equipment such as phase-shifting transformers, load tap changing transformers, and switched capacitors and inductors.

3.4. Those planning events in Table 1, that are expected to produce more severe System impacts on its portion of the BES, shall be identified and a list of those Contingencies
to be evaluated for System performance in Requirement R3, Part 3.1 created. The rationale for those Contingencies selected for evaluation shall be available as supporting information.

3.4.1. The Planning Coordinator and Transmission Planner shall coordinate with adjacent Planning Coordinators and Transmission Planners to ensure that Contingencies on adjacent Systems which may impact their Systems are included in the Contingency list.

3.5. Those extreme events in Table 1 that are expected to produce more severe System impacts shall be identified and a list created of those events to be evaluated in Requirement R3, Part 3.2. The rationale for those Contingencies selected for evaluation shall be available as supporting information. If the analysis concludes there is Cascading caused by the occurrence of extreme events, an evaluation of possible actions designed to reduce the likelihood or mitigate the consequences and adverse impacts of the event(s) shall be conducted.

R4. For the Stability portion of the Planning Assessment, as described in Requirement R2, Parts 2.4 and 2.5, each Transmission Planner and Planning Coordinator shall perform the Contingency analyses listed in Table 1. The studies shall be based on computer simulation models using data provided in Requirement R1.  

4.1. Studies shall be performed for planning events to determine whether the BES meets the performance requirements in Table 1 based on the Contingency list created in Requirement R4, Part 4.4.

4.1.1. For planning event P1: No generating unit shall pull out of synchronism. A generator being disconnected from the System by fault clearing action or by a Special Protection System is not considered pulling out of synchronism.

4.1.2. For planning events P2 through P7: When a generator pulls out of synchronism in the simulations, the resulting apparent impedance swings shall not result in the tripping of any Transmission system elements other than the generating unit and its directly connected Facilities.

4.1.3. For planning events P1 through P7: Power oscillations shall exhibit acceptable damping as established by the Planning Coordinator and Transmission Planner.

4.2. Studies shall be performed to assess the impact of the extreme events which are identified by the list created in Requirement R4, Part 4.5.

4.3. Contingency analyses for Requirement R4, Parts 4.1 and 4.2 shall:

4.3.1. Simulate the removal of all elements that the Protection System and other automatic controls are expected to disconnect for each Contingency without operator intervention. The analyses shall include the impact of subsequent:

4.3.1.1. Successful high speed (less than one second) reclosing and unsuccessful high speed reclosing into a Fault where high speed reclosing is utilized.

4.3.1.2. Tripping of generators where simulations show generator bus voltages or high side of the GSU voltages are less than known or assumed generator low voltage ride through capability. Include in the assessment any assumptions made.
4.3.1.3. Tripping of Transmission lines and transformers where transient swings cause Protection System operation based on generic or actual relay models.

4.3.2. Simulate the expected automatic operation of existing and planned devices designed to provide dynamic control of electrical system quantities when such devices impact the study area. These devices may include equipment such as generation exciter control and power system stabilizers, static var compensators, power flow controllers, and DC Transmission controllers.

4.4. Those planning events in Table 1 that are expected to produce more severe System impacts on its portion of the BES, shall be identified, and a list created of those Contingencies to be evaluated in Requirement R4, Part 4.1. The rationale for those Contingencies selected for evaluation shall be available as supporting information.

4.4.1. Each Planning Coordinator and Transmission Planner shall coordinate with adjacent Planning Coordinators and Transmission Planners to ensure that Contingencies on adjacent Systems which may impact their Systems are included in the Contingency list.

4.5. Those extreme events in Table 1 that are expected to produce more severe System impacts shall be identified and a list created of those events to be evaluated in Requirement R4, Part 4.2. The rationale for those Contingencies selected for evaluation shall be available as supporting information. If the analysis concludes there is Cascading caused by the occurrence of extreme events, an evaluation of possible actions designed to reduce the likelihood or mitigate the consequences of the event(s) shall be conducted.

R5. Each Transmission Planner and Planning Coordinator shall have criteria for acceptable System steady state voltage limits, post-Contingency voltage deviations, and the transient voltage response for its System. For transient voltage response, the criteria shall at a minimum, specify a low voltage level and a maximum length of time that transient voltages may remain below that level. [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]

R6. Each Transmission Planner and Planning Coordinator shall define and document, within their Planning Assessment, the criteria or methodology used in the analysis to identify System instability for conditions such as Cascading, voltage instability, or uncontrolled islanding. [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]

R7. Each Planning Coordinator, in conjunction with each of its Transmission Planners, shall determine and identify each entity’s individual and joint responsibilities for performing the required studies for the Planning Assessment. [Violation Risk Factor: Low] [Time Horizon: Long-term Planning]

R8. Each Planning Coordinator and Transmission Planner shall distribute its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners within 90 calendar days of completing its Planning Assessment, and to any functional entity that has a reliability related need and submits a written request for the information within 30 days of such a request. [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]

8.1. If a recipient of the Planning Assessment results provides documented comments on the results, the respective Planning Coordinator or Transmission Planner shall provide a documented response to that recipient within 90 calendar days of receipt of those comments.
Table 1 – Steady State & Stability Performance Planning Events

**Steady State & Stability:**

- a. The System shall remain stable. Cascading and uncontrolled islanding shall not occur.
- b. Consequential Load Loss as well as generation loss is acceptable as a consequence of any event excluding P0.
- c. Simulate the removal of all elements that Protection Systems and other controls are expected to automatically disconnect for each event.
- d. Simulate Normal Clearing unless otherwise specified.
- e. Planned System adjustments such as Transmission configuration changes and re-dispatch of generation are allowed if such adjustments are executable within the time duration applicable to the Facility Ratings.

**Steady State Only:**

- f. Applicable Facility Ratings shall not be exceeded.
- g. System steady state voltages and post-Contingency voltage deviations shall be within acceptable limits as established by the Planning Coordinator and the Transmission Planner.
- h. Planning event P0 is applicable to steady state only.
- i. The response of voltage sensitive Load that is disconnected from the System by end-user equipment associated with an event shall not be used to meet steady state performance requirements.

**Stability Only:**

- j. Transient voltage response shall be within acceptable limits established by the Planning Coordinator and the Transmission Planner.

<table>
<thead>
<tr>
<th>Category</th>
<th>Initial Condition</th>
<th>Event 1</th>
<th>Fault Type 2</th>
<th>BES Level 3</th>
<th>Interruption of Firm Transmission Service Allowed</th>
<th>Non-Consequential Load Loss Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>P0</strong>&lt;br&gt;No Contingency</td>
<td>Normal System</td>
<td>None</td>
<td>N/A</td>
<td>EHV, HV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td><strong>P1</strong>&lt;br&gt;Single Contingency</td>
<td>Normal System</td>
<td>Loss of one of the following:</td>
<td>3Ø</td>
<td>EHV, HV</td>
<td>No&lt;sup&gt;9&lt;/sup&gt;</td>
<td>No&lt;sup&gt;12&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Generator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Transmission Circuit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Transformer&lt;sup&gt;5&lt;/sup&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Shunt Device&lt;sup&gt;6&lt;/sup&gt;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Single Pole of a DC line</td>
<td>SLG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>P2</strong>&lt;br&gt;Single Contingency</td>
<td>Normal System</td>
<td>1. Opening of a line section w/o a fault&lt;sup&gt;7&lt;/sup&gt;</td>
<td>N/A</td>
<td>EHV, HV</td>
<td>No&lt;sup&gt;9&lt;/sup&gt;</td>
<td>No&lt;sup&gt;12&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Bus Section Fault</td>
<td>SLG</td>
<td>EHV</td>
<td>No&lt;sup&gt;9&lt;/sup&gt;</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HV</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Internal Breaker Fault&lt;sup&gt;8&lt;/sup&gt; (non-Bus-tie Breaker)</td>
<td>SLG</td>
<td>EHV</td>
<td>No&lt;sup&gt;9&lt;/sup&gt;</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Internal Breaker Fault (Bus-tie Breaker)&lt;sup&gt;9&lt;/sup&gt;</td>
<td>SLG</td>
<td>EHV, HV</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

<sup>5</sup> Transformer type is noted in parentheses for clarity.

<sup>6</sup> Shunt device type is noted in parentheses for clarity.

<sup>7</sup> Opening of a line section without a fault.

<sup>8</sup> Internal breaker fault.

<sup>9</sup> Load loss cutoff threshold.

<sup>10</sup> Interruption of firm transmission service.

<sup>11</sup> Non-consequential load loss allowed.
<table>
<thead>
<tr>
<th>Category</th>
<th>Initial Condition</th>
<th>Event</th>
<th>Fault Type</th>
<th>BES Level</th>
<th>Interruption of Firm Transmission Service Allowed</th>
<th>Non-Consequential Load Loss Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>Loss of generator unit followed by system adjustments</td>
<td>Loss of one of the following: 1. Generator 2. Transmission Circuit 3. Transformer 4. Shunt Device 5. Single pole of a DC line</td>
<td>3Ø</td>
<td>EHV, HV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P4</td>
<td>Normal System</td>
<td>Loss of multiple elements caused by a stuck breaker (non-Bus-tie Breaker) attempting to clear a fault on one of the following: 1. Generator 2. Transmission Circuit 3. Transformer 4. Shunt Device 5. Bus Section 6. Loss of multiple elements caused by a stuck breaker (Bus-tie Breaker) attempting to clear a fault on the associated bus</td>
<td>SLG</td>
<td>EHV, HV</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>P5</td>
<td>Normal System</td>
<td>Delayed Fault Clearing due to the failure of a non-redundant relay protecting the faulted element to operate as designed, for one of the following: 1. Generator 2. Transmission Circuit 3. Transformer 4. Shunt Device 5. Bus Section</td>
<td>SLG</td>
<td>EHV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>P6</td>
<td>Loss of one of the following followed by system adjustments</td>
<td>Loss of one of the following: 1. Transmission Circuit 2. Transformer 3. Shunt Device 4. Single pole of a DC line</td>
<td>3Ø</td>
<td>EHV, HV</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Category</td>
<td>Initial Condition</td>
<td>Event 1</td>
<td>Fault Type 2</td>
<td>BES Level 3</td>
<td>Interruption of Firm Transmission Service Allowed</td>
<td>Non-Consequential Load Loss Allowed</td>
</tr>
<tr>
<td>-----------------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>P7 Multiple Contingency (Common Structure)</td>
<td>Normal System</td>
<td>The loss of: 1. Any two adjacent (vertically or horizontally) circuits on common structure 11 2. Loss of a bipolar DC line</td>
<td>SLG</td>
<td>EHV, HV</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
### Table 1 – Steady State & Stability Performance Extreme Events

<table>
<thead>
<tr>
<th>Steady State &amp; Stability</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>For all extreme events evaluated:</strong></td>
<td><strong>1. With an initial condition of a single generator, Transmission circuit, single pole of a DC line, shunt device, or transformer forced out of service, apply a 3Ø fault on another single generator, Transmission circuit, single pole of a different DC line, shunt device, or transformer forced out of service prior to System adjustments.</strong></td>
</tr>
<tr>
<td>a. Simulate the removal of all elements that Protection Systems and automatic controls are expected to disconnect for each Contingency.</td>
<td><strong>2. Local or wide area events affecting the Transmission System such as:</strong></td>
</tr>
<tr>
<td>b. Simulate Normal Clearing unless otherwise specified.</td>
<td>a. 3Ø fault on generator with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</td>
</tr>
<tr>
<td><strong>Steady State</strong></td>
<td><strong>b. 3Ø fault on Transmission circuit with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</strong></td>
</tr>
<tr>
<td>1. Loss of a single generator, Transmission Circuit, single pole of a DC Line, shunt device, or transformer forced out of service followed by another single generator, Transmission Circuit, single pole of a different DC Line, shunt device, or transformer forced out of service prior to System adjustments.</td>
<td><strong>c. 3Ø fault on transformer with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</strong></td>
</tr>
<tr>
<td>2. Local area events affecting the Transmission System such as:</td>
<td><strong>d. 3Ø fault on bus section with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</strong></td>
</tr>
<tr>
<td>a. Loss of a tower line with three or more circuits.\textsuperscript{11}</td>
<td><strong>e. 3Ø internal breaker fault.</strong></td>
</tr>
<tr>
<td>b. Loss of all Transmission lines on a common Right-of-Way\textsuperscript{11}.</td>
<td><strong>f. Other events based upon operating experience, such as consideration of initiating events that experience suggests may result in wide area disturbances.</strong></td>
</tr>
<tr>
<td>c. Loss of a switching station or substation (loss of one voltage level plus transformers).</td>
<td><strong>Steady State</strong></td>
</tr>
<tr>
<td>d. Loss of all generating units at a generating station.</td>
<td><strong>1. With an initial condition of a single generator, Transmission circuit, single pole of a DC line, shunt device, or transformer forced out of service, apply a 3Ø fault on another single generator, Transmission circuit, single pole of a different DC line, shunt device, or transformer forced out of service prior to System adjustments.</strong></td>
</tr>
<tr>
<td>e. Loss of a large Load or major Load center.</td>
<td><strong>2. Local or wide area events affecting the Transmission System such as:</strong></td>
</tr>
<tr>
<td><strong>Steady State</strong></td>
<td>a. 3Ø fault on generator with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</td>
</tr>
<tr>
<td><strong>2. Local area events affecting the Transmission System such as:</strong></td>
<td>b. 3Ø fault on Transmission circuit with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</td>
</tr>
<tr>
<td>a. Loss of a tower line with three or more circuits.\textsuperscript{11}</td>
<td>c. 3Ø fault on transformer with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</td>
</tr>
<tr>
<td>b. Loss of all Transmission lines on a common Right-of-Way\textsuperscript{11}.</td>
<td><strong>d. 3Ø fault on bus section with stuck breaker\textsuperscript{10} or a relay failure\textsuperscript{13} resulting in Delayed Fault Clearing.</strong></td>
</tr>
<tr>
<td>c. Loss of a switching station or substation (loss of one voltage level plus transformers).</td>
<td><strong>e. 3Ø internal breaker fault.</strong></td>
</tr>
<tr>
<td>d. Loss of all generating units at a generating station.</td>
<td><strong>f. Other events based upon operating experience, such as consideration of initiating events that experience suggests may result in wide area disturbances.</strong></td>
</tr>
<tr>
<td>e. Loss of a large Load or major Load center.</td>
<td><strong>Steady State</strong></td>
</tr>
</tbody>
</table>

---

\textsuperscript{10} [Note: Placeholder for footnote number.]  
\textsuperscript{11} [Note: Placeholder for footnote number.]  
\textsuperscript{13} [Note: Placeholder for footnote number.]  
\textsuperscript{14} [Note: Placeholder for footnote number.]
### Table 1 – Steady State & Stability Performance Footnotes

**Table:** Planning Events and Extreme Events

1. If the event analyzed involves BES elements at multiple System voltage levels, the lowest System voltage level of the element(s) removed for the analyzed event determines the stated performance criteria regarding allowances for interruptions of Firm Transmission Service and Non-Consequential Load Loss.

2. Unless specified otherwise, simulate Normal Clearing of faults. Single line to ground (SLG) or three-phase (3Ø) are the fault types that must be evaluated in Stability simulations for the event described. A 3Ø or a double line to ground fault study indicating the criteria are being met is sufficient evidence that a SLG condition would also meet the criteria.

3. Bulk Electric System (BES) level references include extra-high voltage (EHV) Facilities defined as greater than 300kV and high voltage (HV) Facilities defined as the 300kV and lower voltage Systems. The designation of EHV and HV is used to distinguish between stated performance criteria allowances for interruption of Firm Transmission Service and Non-Consequential Load Loss.

4. Curtailment of Conditional Firm Transmission Service is allowed when the conditions and/or events being studied formed the basis for the Conditional Firm Transmission Service.

5. For non-generator step up transformer outage events, the reference voltage, as used in footnote 1, applies to the low-side winding (excluding tertiary windings). For generator and Generator Step Up transformer outage events, the reference voltage applies to the BES connected voltage (high-side of the Generator Step Up transformer). Requirements which are applicable to transformers also apply to variable frequency transformers and phase shifting transformers.

6. Requirements which are applicable to shunt devices also apply to FACTS devices that are connected to ground.

7. Opening one end of a line section without a fault on a normally networked Transmission circuit such that the line is possibly serving Load radial from a single source point.

8. An internal breaker fault means a breaker failing internally, thus creating a System fault which must be cleared by protection on both sides of the breaker.

9. An objective of the planning process should be to minimize the likelihood and magnitude of interruption of Firm Transmission Service following Contingency events. Curtailment of Firm Transmission Service is allowed both as a System adjustment (as identified in the column entitled ‘Initial Condition’) and a corrective action when achieved through the appropriate re-dispatch of resources obligated to re-dispatch, where it can be demonstrated that Facilities, internal and external to the Transmission Planner’s planning region, remain within applicable Facility Ratings and the re-dispatch does not result in any Non-Consequential Load Loss. Where limited options for re-dispatch exist, sensitivities associated with the availability of those resources should be considered.

10. A stuck breaker means that for a gang-operated breaker, all three phases of the breaker have remained closed. For an independent pole operated (IPO) or an independent pole tripping (IPT) breaker, only one pole is assumed to remain closed. A stuck breaker results in Delayed Fault Clearing.

11. Excludes circuits that share a common structure (Planning event P7, Extreme event steady state 2a) or common Right-of-Way (Extreme event, steady state 2b) for 1 mile or less.

12. An objective of the planning process is to minimize the likelihood and magnitude of Non-Consequential Load Loss following planning events. In limited circumstances, Non-Consequential Load Loss may be needed throughout the planning horizon to ensure that BES performance requirements are met. However, when Non-Consequential Load Loss is utilized under footnote 12 within the Near-Term Transmission Planning Horizon to address BES performance requirements, such interruption is limited to circumstances where the Non-Consequential Load Loss meets the conditions shown in Attachment 1. In no case can the planned Non-Consequential Load Loss under footnote 12 exceed 75 MW for US registered entities. The amount of planned Non-Consequential Load Loss for a non-US Registered Entity should be implemented in a manner that is consistent with, or under the direction of, the applicable governmental authority or its agency in the non-US jurisdiction.

13. Applies to the following relay functions or types: pilot (#85), distance (#21), differential (#87), current (#50, 51, and 67), voltage (#27 & 59), directional (#32, &
### Table 1 – Steady State & Stability Performance Footnotes
(Planning Events and Extreme Events)

<table>
<thead>
<tr>
<th>Footnote Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67), and tripping (#86, &amp; 94).</td>
</tr>
</tbody>
</table>
I. Stakeholder Process

During each Planning Assessment before the use of Non-Consequential Load Loss under footnote 12 is allowed as an element of a Corrective Action Plan in the Near-Term Transmission Planning Horizon of the Planning Assessment, the Transmission Planner or Planning Coordinator shall ensure that the utilization of footnote 12 is reviewed through an open and transparent stakeholder process. The responsible entity can utilize an existing process or develop a new process. The process must include the following:

1. Meetings must be open to affected stakeholders including applicable regulatory authorities or governing bodies responsible for retail electric service issues.
2. Notice must be provided in advance of meetings to affected stakeholders including applicable regulatory authorities or governing bodies responsible for retail electric service issues and include an agenda with:
   a. Date, time, and location for the meeting
   b. Specific location(s) of the planned Non-Consequential Load Loss under footnote 12
   c. Provisions for a stakeholder comment period
3. Information regarding the intended purpose and scope of the proposed Non-Consequential Load Loss under footnote 12 (as shown in Section II below) must be made available to meeting participants.
4. A procedure for stakeholders to submit written questions or concerns and to receive written responses to the submitted questions and concerns.
5. A dispute resolution process for any question or concern raised in #4 above that is not resolved to the stakeholder’s satisfaction.

An entity does not have to repeat the stakeholder process for a specific application of footnote 12 utilization with respect to subsequent Planning Assessments unless conditions spelled out in Section II below have materially changed for that specific application.

II. Information for Inclusion in Item #3 of the Stakeholder Process

The responsible entity shall document the planned use of Non-Consequential Load Loss under footnote 12 which must include the following:

1. Conditions under which Non-Consequential Load Loss under footnote 12 would be necessary:
   a. System Load level and estimated annual hours of exposure at or above that Load level
   b. Applicable Contingencies and the Facilities outside their applicable rating due to that Contingency
2. Amount of Non-Consequential Load Loss with:
   a. The estimated number and type of customers affected
b. An explanation of the effect of the use of Non-Consequential Load Loss under footnote 12 on the health, safety, and welfare of the community

3. Estimated frequency of Non-Consequential Load Loss under footnote 12 based on historical performance

4. Expected duration of Non-Consequential Load Loss under footnote 12 based on historical performance

5. Future plans to alleviate the need for Non-Consequential Load Loss under footnote 12

6. Verification that TPL Reliability Standards performance requirements will be met following the application of footnote 12

7. Alternatives to Non-Consequential Load Loss considered and the rationale for not selecting those alternatives under footnote 12

8. Assessment of potential overlapping uses of footnote 12 including overlaps with adjacent Transmission Planners and Planning Coordinators

III. Instances for which Regulatory Review of Non-Consequential Load Loss under Footnote 12 is Required

Before a Non-Consequential Load Loss under footnote 12 is allowed as an element of a Corrective Action Plan in Year One of the Planning Assessment, the Transmission Planner or Planning Coordinator must ensure that the applicable regulatory authorities or governing bodies responsible for retail electric service issues do not object to the use of Non-Consequential Load Loss under footnote 12 if either:

1. The voltage level of the Contingency is greater than 300 kV
   a. If the Contingency analyzed involves BES Elements at multiple System voltage levels, the lowest System voltage level of the element(s) removed for the analyzed Contingency determines the stated performance criteria regarding allowances for Non-Consequential Load Loss under footnote 12, or
   b. For a non-generator step up transformer outage Contingency, the 300 kV limit applies to the low-side winding (excluding tertiary windings). For a generator or generator step up transformer outage Contingency, the 300 kV limit applies to the BES connected voltage (high-side of the Generator Step Up transformer)

2. The planned Non-Consequential Load Loss under footnote 12 is greater than or equal to 25 MW

Once assurance has been received that the applicable regulatory authorities or governing bodies responsible for retail electric service issues do not object to the use of Non-Consequential Load Loss under footnote 12, the Planning Coordinator or Transmission Planner must submit the information outlined in items II.1 through II.8 above to the ERO for a determination of whether there are any Adverse Reliability Impacts caused by the request to utilize footnote 12 for Non-Consequential Load Loss.
C. Measures

M1. Each Transmission Planner and Planning Coordinator shall provide evidence, in electronic or hard copy format, that it is maintaining System models within their respective area, using data consistent with MOD-010 and MOD-012, including items represented in the Corrective Action Plan, representing projected System conditions, and that the models represent the required information in accordance with Requirement R1.

M2. Each Transmission Planner and Planning Coordinator shall provide dated evidence, such as electronic or hard copies of its annual Planning Assessment, that it has prepared an annual Planning Assessment of its portion of the BES in accordance with Requirement R2.

M3. Each Transmission Planner and Planning Coordinator shall provide dated evidence, such as electronic or hard copies of the studies utilized in preparing the Planning Assessment, in accordance with Requirement R3.

M4. Each Transmission Planner and Planning Coordinator shall provide dated evidence, such as electronic or hard copies of the studies utilized in preparing the Planning Assessment in accordance with Requirement R4.

M5. Each Transmission Planner and Planning Coordinator shall provide dated evidence such as electronic or hard copies of the documentation specifying the criteria for acceptable System steady state voltage limits, post-Contingency voltage deviations, and the transient voltage response for its System in accordance with Requirement R5.

M6. Each Transmission Planner and Planning Coordinator shall provide dated evidence, such as electronic or hard copies of the documentation specifying the criteria or methodology used in the analysis to identify System instability for conditions such as Cascading, voltage instability, or uncontrolled islanding that was utilized in preparing the Planning Assessment in accordance with Requirement R6.

M7. Each Planning Coordinator, in conjunction with each of its Transmission Planners, shall provide dated documentation on roles and responsibilities, such as meeting minutes, agreements, and e-mail correspondence that identifies that agreement has been reached on individual and joint responsibilities for performing the required studies and Assessments in accordance with Requirement R7.

M8. Each Planning Coordinator and Transmission Planner shall provide evidence, such as email notices, documentation of updated web pages, postal receipts showing recipient and date; or a demonstration of a public posting, that it has distributed its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners within 90 days of having completed its Planning Assessment, and to any functional entity who has indicated a reliability need within 30 days of a written request and that the Planning Coordinator or Transmission Planner has provided a documented response to comments received on Planning Assessment results within 90 calendar days of receipt of those comments in accordance with Requirement R8.

D. Compliance

1. Compliance Monitoring Process

1.1 Compliance Enforcement Authority

   Regional Entity

1.2 Compliance Monitoring Period and Reset Timeframe

   Not applicable.
1.3 Compliance Monitoring and Enforcement Processes:

Compliance Audits
Self-Certifications
Spot Checking
Compliance Violation Investigations
Self-Reporting
Complaints

1.4 Data Retention

The Transmission Planner and Planning Coordinator shall each retain data or evidence to show compliance as identified unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation:

- The models utilized in the current in-force Planning Assessment and one previous Planning Assessment in accordance with Requirement R1 and Measure M1.
- The Planning Assessments performed since the last compliance audit in accordance with Requirement R2 and Measure M2.
- The studies performed in support of its Planning Assessments since the last compliance audit in accordance with Requirement R3 and Measure M3.
- The studies performed in support of its Planning Assessments since the last compliance audit in accordance with Requirement R4 and Measure M4.
- The documentation specifying the criteria for acceptable System steady state voltage limits, post-Contingency voltage deviations, and transient voltage response since the last compliance audit in accordance with Requirement R5 and Measure M5.
- The documentation specifying the criteria or methodology utilized in the analysis to identify System instability for conditions such as Cascading, voltage instability, or uncontrolled islanding in support of its Planning Assessments since the last compliance audit in accordance with Requirement R6 and Measure M6.
- The current, in force documentation for the agreement(s) on roles and responsibilities, as well as documentation for the agreements in force since the last compliance audit, in accordance with Requirement R7 and Measure M7.

The Planning Coordinator shall retain data or evidence to show compliance as identified unless directed by its Compliance Enforcement Authority to retain specific evidence for a longer period of time as part of an investigation:

- Three calendar years of the notifications employed in accordance with Requirement R8 and Measure M8.

If a Transmission Planner or Planning Coordinator is found non-compliant, it shall keep information related to the non-compliance until found compliant or the time periods specified above, whichever is longer.

1.5 Additional Compliance Information

None
### 2. Violation Severity Levels

<table>
<thead>
<tr>
<th></th>
<th>Lower VSL</th>
<th>Moderate VSL</th>
<th>High VSL</th>
<th>Severe VSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>The responsible entity’s System model failed to represent one of the Requirement R1, Parts 1.1.1 through 1.1.6.</td>
<td>The responsible entity’s System model failed to represent two of the Requirement R1, Parts 1.1.1 through 1.1.6.</td>
<td>The responsible entity’s System model failed to represent three of the Requirement R1, Parts 1.1.1 through 1.1.6.</td>
<td>The responsible entity’s System model failed to represent four or more of the Requirement R1, Parts 1.1.1 through 1.1.6. OR The responsible entity’s System model did not represent projected System conditions as described in Requirement R1. OR The responsible entity’s System model did not use data consistent with that provided in accordance with the MOD-010 and MOD-012 standards and other sources, including items represented in the Corrective Action Plan.</td>
</tr>
<tr>
<td>R2</td>
<td>The responsible entity failed to comply with Requirement R2, Part 2.6.</td>
<td>The responsible entity failed to comply with Requirement R2, Part 2.3 or Part 2.8.</td>
<td>The responsible entity failed to comply with one of the following Parts of Requirement R2: Part 2.1, Part 2.2, Part 2.4, Part 2.5, or Part 2.7.</td>
<td>The responsible entity failed to comply with two or more of the following Parts of Requirement R2: Part 2.1, Part 2.2, Part 2.4, or Part 2.7. OR The responsible entity does not have a completed annual Planning Assessment.</td>
</tr>
<tr>
<td>R3</td>
<td>The responsible entity did not identify planning events as described in Requirement R3, Part 3.4 or extreme events as described in Requirement R3, Part 3.5.</td>
<td>The responsible entity did not perform studies as specified in Requirement R3, Part 3.1 to determine that the BES meets the performance requirements for one of the categories (P2 through P7) in Table 1.</td>
<td>The responsible entity did not perform studies as specified in Requirement R3, Part 3.1 to determine that the BES meets the performance requirements for two of the categories (P2 through P7) in</td>
<td>The responsible entity did not perform studies as specified in Requirement R3, Part 3.1 to determine that the BES meets the performance requirements for three or more of the categories (P2 through P7) in Table 1.</td>
</tr>
<tr>
<td>R4</td>
<td>Lower VSL</td>
<td>Moderate VSL</td>
<td>High VSL</td>
<td>Severe VSL</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td><strong>The responsible entity did not</strong></td>
</tr>
<tr>
<td></td>
<td><strong>identify planning events as</strong></td>
<td><strong>perform studies as specified in</strong></td>
<td><strong>perform studies as specified in</strong></td>
<td><strong>perform studies as specified in</strong></td>
</tr>
<tr>
<td></td>
<td><strong>described in Requirement R4, Part</strong></td>
<td>Requirement R4, Part 4.1 to determine that the BES meets the performance requirements for one of the categories (P1 through P7) in Table 1.</td>
<td>Requirement R4, Part 4.1 to determine that the BES meets the performance requirements for two of the categories (P1 through P7) in Table 1.</td>
<td>Requirement R4, Part 4.1 to determine that the BES meets the performance requirements for three or more of the categories (P1 through P7) in Table 1.</td>
</tr>
<tr>
<td></td>
<td>4.4 or extreme events as described</td>
<td>Requirement R4, Part 4.2 to assess the impact of extreme events.</td>
<td>Requirement R4, Part 4.3.</td>
<td>Requirement R4, Part 4.3.</td>
</tr>
<tr>
<td></td>
<td>in Requirement R4, Part 4.5.</td>
<td><strong>The responsible entity did not perform Contingency analysis as described in Requirement R4, Part 4.3.</strong></td>
<td><strong>The responsible entity did not perform Contingency analysis as described in Requirement R4, Part 4.3.</strong></td>
<td><strong>The responsible entity did not perform Contingency analysis as described in Requirement R4, Part 4.3.</strong></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R5</th>
<th>Lower VSL</th>
<th>Moderate VSL</th>
<th>High VSL</th>
<th>Severe VSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R6</th>
<th>Lower VSL</th>
<th>Moderate VSL</th>
<th>High VSL</th>
<th>Severe VSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The responsible entity failed to define and document the criteria or methodology for System instability used within its analysis as described in Requirement R6.
<table>
<thead>
<tr>
<th></th>
<th>Lower VSL</th>
<th>Moderate VSL</th>
<th>High VSL</th>
<th>Severe VSL</th>
</tr>
</thead>
<tbody>
<tr>
<td>R7</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>The Planning Coordinator, in conjunction with each of its Transmission Planners, failed to determine and identify individual or joint responsibilities for performing required studies.</td>
</tr>
<tr>
<td>R8</td>
<td>The responsible entity distributed its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners but it was more than 90 days but less than or equal to 120 days following its completion. OR, The responsible entity distributed its Planning Assessment results to functional entities having a reliability related need who requested the Planning Assessment in writing but it was more than 30 days but less than or equal to 40 days following the request.</td>
<td>The responsible entity distributed its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners but it was more than 120 days but less than or equal to 130 days following its completion. OR, The responsible entity distributed its Planning Assessment results to functional entities having a reliability related need who requested the Planning Assessment in writing but it was more than 40 days but less than or equal to 50 days following the request.</td>
<td>The responsible entity distributed its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners but it was more than 130 days but less than or equal to 140 days following its completion. OR, The responsible entity distributed its Planning Assessment results to functional entities having a reliability related need who requested the Planning Assessment in writing but it was more than 50 days but less than or equal to 60 days following the request.</td>
<td>The responsible entity distributed its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners but it was more than 140 days following its completion. OR The responsible entity did not distribute its Planning Assessment results to adjacent Planning Coordinators and adjacent Transmission Planners. OR The responsible entity distributed its Planning Assessment results to functional entities having a reliability related need who requested the Planning Assessment in writing but it was more than 60 days following the request. OR The responsible entity did not distribute its Planning Assessment results to functional entities having a reliability related need who requested the Planning Assessment in writing.</td>
</tr>
</tbody>
</table>
### E. Regional Variances

None.

### Version History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Action</th>
<th>Change Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>April 1, 2005</td>
<td>Effective Date</td>
<td>New</td>
</tr>
<tr>
<td>0</td>
<td>February 8, 2005</td>
<td>BOT Approval</td>
<td>Revised</td>
</tr>
<tr>
<td>0</td>
<td>June 3, 2005</td>
<td>Fixed reference in M1 to read TPL-001-0 R2.1 and TPL-001-0 R2.2</td>
<td>Errata</td>
</tr>
<tr>
<td>0</td>
<td>July 24, 2007</td>
<td>Corrected reference in M1 to read TPL-001-0 R1 and TPL-001-0 R2.</td>
<td>Errata</td>
</tr>
<tr>
<td>0.1</td>
<td>October 29, 2008</td>
<td>BOT adopted errata changes; updated version number to “0.1”</td>
<td>Errata</td>
</tr>
<tr>
<td>0.1</td>
<td>May 13, 2009</td>
<td>FERC Approved – Updated Effective Date and Footer</td>
<td>Revised</td>
</tr>
<tr>
<td>1</td>
<td>Approved by Board of Trustees February 17, 2011</td>
<td>Revised footnote ‘b’ pursuant to FERC Order RM06-16-009</td>
<td>Revised (Project 2010-11)</td>
</tr>
<tr>
<td>2</td>
<td>August 4, 2011</td>
<td>Revision of TPL-001-1; includes merging and upgrading requirements of TPL-001-0, TPL-002-0, TPL-003-0, and TPL-004-0 into one, single, comprehensive, coordinated standard: TPL-001-2; and retirement of TPL-005-0 and TPL-006-0.</td>
<td>Project 2006-02 – complete revision</td>
</tr>
<tr>
<td>1</td>
<td>April 19, 2012</td>
<td>FERC issued Order 762 remanding TPL-001-1, TPL-002-1b, TPL-003-1a, and TPL-004-1. FERC also issued a NOPR proposing to remand TPL-001-2. NERC has been directed to revise footnote 'b' in accordance with the directives of Order Nos. 762 and 693.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>February 7, 2013</td>
<td>Adopted by the NERC Board of Trustees. TPL-001-3 was created after the Board of Trustees approved the revised footnote ‘b’ in TPL-002-2b, which was balloted and appended to: TPL-001-0.1, TPL-002-0b, TPL-003-0a, and TPL-004-0.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>February 7, 2013</td>
<td>Adopted by the NERC Board of Trustees. TPL-001-4 was adopted by the Board of Trustees as TPL-001-3, but a discrepancy in numbering was identified and corrected prior to filing with the regulatory agencies.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>October 17, 2013</td>
<td>FERC Order issued approving TPL-001-4 (Order effective December 23, 2013).</td>
<td></td>
</tr>
</tbody>
</table>
## Enforcement Dates: Standard TPL-001-4 — Transmission System Planning Performance Requirements

### United States

<table>
<thead>
<tr>
<th>Standard</th>
<th>Requirement</th>
<th>Enforcement Date</th>
<th>Inactive Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPL-001-4</td>
<td>R1.</td>
<td>01/01/2015</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R2.</td>
<td>01/01/2016</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R3.</td>
<td>01/01/2016</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R4.</td>
<td>01/01/2016</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R5.</td>
<td>01/01/2016</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R6.</td>
<td>01/01/2016</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R7.</td>
<td>01/01/2015</td>
<td></td>
</tr>
<tr>
<td>TPL-001-4</td>
<td>R8.</td>
<td>01/01/2016</td>
<td></td>
</tr>
</tbody>
</table>