Southwest Power Pool, Inc.
Model Development Working Group
Oklahoma City, Oklahoma
January 23: 8:00 A.M. – 5:00 P.M.
January 24: 8:00 A.M. – 12:00 P.M.

• M I N U T E S •

Agenda Item 1 – Administrative Items:

– Agenda Item 1a – Call to Order:
The meeting was called to order at approximately 8:05 a.m.

– Agenda Item 1b,c – Attendance and Proxies:
The following MDWG members and guests were in attendance.

MDWG Members present:

<table>
<thead>
<tr>
<th>MDWG Member</th>
<th>Present</th>
<th>Proxy</th>
<th>Present</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nate Morris</td>
<td>YES</td>
<td></td>
<td></td>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>Derek Brown</td>
<td>YES</td>
<td></td>
<td></td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Dustin Betz</td>
<td>YES</td>
<td></td>
<td></td>
<td>Nebraska Public Power District</td>
</tr>
<tr>
<td>John Boshears</td>
<td>YES</td>
<td></td>
<td></td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jerad Ethridge</td>
<td>YES</td>
<td></td>
<td></td>
<td>Oklahoma Gas & Electric</td>
</tr>
<tr>
<td>Joe Fultz</td>
<td>YES</td>
<td></td>
<td></td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Wayne Haidle</td>
<td>YES</td>
<td></td>
<td></td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Holli Krizek</td>
<td>YES</td>
<td></td>
<td></td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Reené Miranda</td>
<td>YES</td>
<td></td>
<td></td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Alex Mucha</td>
<td>YES</td>
<td></td>
<td></td>
<td>Oklahoma Municipal Power Authority</td>
</tr>
<tr>
<td>Gimod Olapurayil</td>
<td>YES</td>
<td></td>
<td></td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Scott Schichtl</td>
<td>NO</td>
<td></td>
<td></td>
<td>Arkansas Electric Cooperative Company</td>
</tr>
<tr>
<td>Jason Shook</td>
<td>YES</td>
<td></td>
<td></td>
<td>GDS Associates</td>
</tr>
<tr>
<td>Liam Stringham</td>
<td>YES</td>
<td></td>
<td></td>
<td>Sunflower Electric Power Corporation</td>
</tr>
<tr>
<td>Anthony Cook</td>
<td>YES</td>
<td></td>
<td></td>
<td>Southwest Power Pool, Inc.</td>
</tr>
</tbody>
</table>
Additional Guests present:

<table>
<thead>
<tr>
<th>Guests</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Rainbolt, Martin Green</td>
<td>American Electric Power</td>
</tr>
<tr>
<td>Ellis Lutz</td>
<td>Associated Electric Coop</td>
</tr>
<tr>
<td>Jeremy Severson, Garrett Schilling,</td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Jason Mazigian</td>
<td></td>
</tr>
<tr>
<td>Kevin Foflygen, Jerry Bradshaw, Jeff</td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Knottke</td>
<td></td>
</tr>
<tr>
<td>Jordan Lamb</td>
<td>East River Electric</td>
</tr>
<tr>
<td>Jeff Crites</td>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>Raman Somayajulu</td>
<td>Enel Green Power North America</td>
</tr>
<tr>
<td>Mark Reinart, Charles Aleman</td>
<td>Golden Spread Electric Coop</td>
</tr>
<tr>
<td>Dona Parks, Diego Toledo</td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Charles Shue</td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Ryan Baysinger, Lafayette Gatewood IV</td>
<td>Kansas City Power & Light</td>
</tr>
<tr>
<td>Alan Burbach</td>
<td>Lincoln Electric System</td>
</tr>
<tr>
<td>Sam Zewdie</td>
<td>Midwest Reliability Organization</td>
</tr>
<tr>
<td>John Weber, Andy Berg</td>
<td>Missouri River Energy Services</td>
</tr>
<tr>
<td>Bruce Doll, Armin Sehic</td>
<td>Municipal Energy Agency of Nebraska</td>
</tr>
<tr>
<td>Jason Schmidt</td>
<td>NextEra Energy Resources</td>
</tr>
<tr>
<td>James Thomas, Daryl Huslig, Steve</td>
<td>Oklahoma Gas & Electric</td>
</tr>
<tr>
<td>Hardebeck, Kevin Ma, Hermes Arevalo</td>
<td></td>
</tr>
<tr>
<td>John Mayhan, Tom Mayhan</td>
<td>Omaha Public Power District</td>
</tr>
<tr>
<td>Scott Mijin, Dave Sargent</td>
<td>Southwest Power Administration</td>
</tr>
<tr>
<td>Eddie Watson, Sunny Raheem, Moses</td>
<td>Southwest Power Pool, Inc.</td>
</tr>
<tr>
<td>Rotich, Michael Odom, Zack Bearden,</td>
<td></td>
</tr>
<tr>
<td>Mitch Jackson, Moe Shahriar</td>
<td></td>
</tr>
<tr>
<td>Aravind Chellappa</td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Steve Gaw</td>
<td>The Wind Coalition</td>
</tr>
<tr>
<td>Jeremy Harris</td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Josie Daggett</td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Shaun Golden, Joe Williams</td>
<td>Western Farmers Electric Coop</td>
</tr>
</tbody>
</table>

– Agenda Item 1d – Agenda Review:
Nate Morris asked the group if they had any modifications to the agenda or issues with the posted material. No one voiced any dissention.

Motion: Jason Shook made the motion to approve the agenda as presented. Alex Mucha seconded the motion. The motion passed unanimously.
(Attachment 1 - MDWG Meeting Agenda 20180123-24.docx)
– **Agenda Item 1e – Previous Meeting Minutes:**
The group was asked if there were any proposed edits to the December 7, 2017 meeting minutes. No one stated any issues with the minutes.

 Motion: Joe Fultz motioned to approve the December 7, 2017 meeting minutes as presented. Gimod Olapurayil seconded the motion. The motion passed unanimously. (Attachment 2 - MDWG Minutes_12-07-2017.docx)

Agenda Item 2 – 2018 Series Status:

– **Agenda Item 2a – Power Flow:**
Nate Morris asked everyone what their thoughts are on the model build so far.

 • Derek Brown stated that dealing with two model builds simultaneously has been a challenge and added work load.
 • Jason Shook said that the GlobalScape transition has been challenging.
 • Alex Mucha thinks the build has gone smoother with improved communication to coordinate with others.
 • Reené Miranda asked why there were so many models being posted; referencing the Solved Area Interchange Enabled/Disabled models and the Unsolved models.
 o Moses Rotich stated that individuals have asked for both Area Interchange Enabled and Disabled sets to be able to look at the models in different views. The Unsolved models are posted so that individuals can see the issues that SPP had to correct in order to get the models to solve.
 • Martin Green asked why there is a need for the windfarms to be modeled to the turbine voltage.
 o Anthony Cook stated that windfarm topology is needed for the dynamic models and Generation Interconnection studies. For efficiency and process improvement, it was requested that the data submitters submit the topology during the power flow model build. He added that recently the MMWG added it as a modeling guideline and MDWG adopted it as a requirement.
 • Moses Rotich stated that participation has been a lot better this year; however, docucode issues propagating through the passes is still an issue. He added that there are several issues remaining in the Pass 4 models. He stated that many individuals are asking questions to which the answers are in the posting emails, which infers that the emails are not being read. He reminded everyone that for the rest of the build, SPP will now have to be notified of load and interchange changes and generation addition/retirements or submissions won’t be accepted. This is so that SPP can determine the impact on the model build and decide whether the updates need to be presented to the MDWG/TWG for approval before being included in the models.
 o Wayne Haidle voiced concern that there is still a lot of work to be done for Basin and doesn’t think the practice of having to go through an approval process to submit data is helpful to the model building process.
 • Anthony Cook reminded everyone that profile files should only have the data that the data submitter is responsible for or has agreed to submit on behalf of another data owner. He stated that there was an instance where someone else’s data was included in a data submitters profile and a seasonal profile file was accidentally attached to the wrong base seasonal profile.
 • Wayne Haidle asked why SPP changes the schedules set on the DC ties by the data submitters.
Moses Rotich answered that the DC schedules come from the transactions worksheet in the Data Submittal Workbook. SPP’s scripts set the inverter and rectifier per the DC tie totals and direction of flow based on the data submitted. An action item was requested that SPP Staff and the DC Tie Entities meet to improve DC tie coordination.

AI: SPP Staff and DC Tie Entities meet to improve DC Tie coordination

Anthony Cook explained that the Data Coordination Workbook contains the information for who is submitting modeling data on behalf of whom for the 2018 Series model build. He also explained that the power flow model report card only contains entities that have submitted data directly to SPP throughout the power flow model build. He stated that the Data Coordination Workbook and the Report Card should be used together to determine if an entities data is being submitted. For example: if an entities’ data is being submitted by another entity, their company name would not appear on the report card, but the submitting entities’ company name does if data is being submitted.

- Jerad Ethridge asked which standard the Report Card covers.
 - Moses Rotich answered that it covers those entities that are applicable to MOD-032 or the SPP Tariff.
- Gimod Olapurayil asked if a column can be added to the Report Card to show the number of docucode issues that are being addressed.
 - Anthony Cook stated that it could be difficult to track that, but SPP Staff will look into it. He also stated that it is helpful if data submitters send an email that details what their submissions are expected to update/correct.

AI: SPP Staff to look into tracking docucode issues being corrected each pass and added to the Report Card.

Zack Bearden provided a history of the block dispatch, what the ECDI dispatch is, and the current status of the ECDI dispatch. He stated that there wasn’t a lot of participation with updating the block dispatch on a yearly basis and therefore the data could be stagnate. Also, generation additions and retirements were possibly not getting applied correctly to the block dispatch order. The ECDI dispatch is an economic dispatch function within PSSE and can be updated yearly based on data submitted through SPP Operational processes. It will also allow for inputs from the individual GO is desired. Zack asked that everyone review the Gen Overview worksheet of the docucode report in the ITP model posting and tell him about base load units as well as any other changes that need to be made. He also requested that station service loads are reviewed for accuracy.

– **Agenda Item 2b – Short Circuit:**
Zack Bearden stated that Pass 2 will be posted on Thursday. He reminded everyone that the 2022 Summer model will be studied in the ITP assessment this year.

- Alex Mucha stated that software versions can cause issues in data submissions so data submitters need to be careful to review the data.

– **Agenda Item 2c – Dynamics:**
Moe Shahriar stated that there are windfarms still being modeled on the 34.5 kV level as well as some are being modeled as non-windfarms.

- Derek Brown stated that some of those windfarms are not modeled in detail due to the lack of data provided by the GO.
• Mark Reinart asked if there is a template for data submission.
 o Moe stated that he prefers to receive the data in text format.
 o Michael Odom stated to comment out old data so that they can distinguish the
difference between the old and new data and so that if the new data doesn’t work
properly, the old data can be used and not delay the build.

-- Agenda Item 2d – GlobalScape Implementation:
Moses Rotich reminded everyone that GlobalScape is replacing TrueShare as the file sharing
site for the model data. An RMS ticket will have to be submitted in order to request access.
TrueShare will no longer be used by SPP as of February 1, 2018.
 • There were concerns about multiple file download capability. It was stated that only two
 files at a time can be downloaded.
 • There were also concerns about the time-out duration. It was stated that the amount of
 in-active time is too short.
 • Nate Morris said it seems GlobalScape works best with Internet Explorer.

Agenda Item 3 – Charter:
The proposed Charter updates were presented to the group. The group discussed the need for
individual taskforces to focus on power flow, dynamics, and short circuit. After a lengthy
discussion, Anthony Cook stated that it seemed the topic for task forces needed more
discussion and should be pushed to another meeting for consideration. After additional edits of
the proposed updates, Nate Morris solicited a motion.

 Motion: Jerad Ethridge motioned to endorse the charter updates to be approved
 by applicable SPP Org Groups. Derek Brown seconded the motion. The motion
 passed unanimously. (Attachment 3 - MDGW_Charter_1-23-2018.docx)

Agenda Item 4 – MOD Matrix:
-- Agenda Item 4a, b – ITP Only Projects, Brainstorming Type/Status:
Anthony Cook stated that an effort by both SPP Staff and Data Submitters is needed to update
the MOD Matrix. He asked individuals to provide types and statuses that make sense to them
in order to make the matrix more useful.
 • Reené Miranda asked about a category for projects that SPP could use in a study if they
 are useful to correct issues.
 • Derek Brown discussed the NERC Standard Compliance projects and how they are
 intended to be used; however, he believes that fictitious facilities shouldn’t be in the base
cases.
 • Derek also discussed the need for ITP specific projects. He state that the Westar slack
 machine needed to be changed for the ITP Light Load models due to the new
 requirement to model firm wind at 100%.

AI: Data Submitters to provide ideas on MOD Matrix update for possible new types and
statuses for the March meeting.

Agenda Item 5 – MDWG Manual Updates:
Anthony presented the proposed manual changes to the group. Additional updates were
presented for the Shortfall Guidance Process that were submitted after the posted material. It
was also requested to change references of TrueShare to GlobalScape. After discussion of the Shortfall Process, the group decided to make the updates necessary for the 2018 Series model build and allow the Manual Taskforce to re-examine this section. Nate Morris asked the group how to proceed with approving the updates, as a whole or individually. The group decided to approve the updates as a whole. Nate entertained a motion to approve the manual updates.

Motion: Jerad Ethridge motioned to approve the updates as discussed in the meeting. Derek Brown seconded the motion. The motion passed unanimously. (Attachment 4 - SPP MDWG Model Development Procedure Manual (Public)_V16.docx)

Agenda Item 6 – Modeling Practices:

--- **Agenda Item 6a – Generation without Firm Transmission Service:**

Dustin Betz asked how to handle generation without firm transmission service in the MDWG models. He explained that his practice is to model the units but not dispatch them. He was looking for how others handle this situation.

- Reené stated that SPS models them a zero.
- Dustin asked if entities would be able to call upon resources without firm service to cover shortfall in the future.
- Anthony Cook stated that if anyone has such issues, they are invited to the Manual TF calls to help craft language and steer discussion that can be incorporated in the manual.

It was requested that the Manual Taskforce discuss this situation and draft language for the 2019 Series.

AI: Manual Taskforce to discuss the modeling practice of generation without firm transmission service and draft language for the 2019 Series.

--- **Agenda Item 6b – Grid Switching Generation:**

Mark Reinart explained that Golden Spread has natural gas based units that have the ability to serve the SPP and ERCOT systems. Upon review, he noticed that in some situations some of these units are being dispatched in the planning models for the same seasons, mainly summers. He was looking for guidance and possibly manual language to be drafted in the future.

- Anthony Cook stated that if anyone has such issues, they are invited to the Manual TF calls to help craft language and steer discussion that can be incorporated in the manual.

AI: Manual Taskforce to discuss the modeling practice of grid switching generation and draft language for the 2019 Series.

AI: SPP Modeling Staff to work with SPP Operations and SPP Planning and possibly ERCOT to see what is/can be done procedurally.

Agenda Item 7 – Model On Demand:

--- **Agenda Item 7a – Project vs. Profile Data:**

Anthony Cook briefly gave an overview of MOD and how projects and profiles work. Wayne then discussed the inconvenience on Basin and its members having to update stagnant data
like transformer taps through dc profiles rather than projects. He asked where the base profile
data came from.

- Anthony answered that he believed the data was from the 2016 Series when SPP
uploaded the IS data into MOD for the IS entities.
- Anthony Cook suggested that SPP work with Basin to upload the Basin device control
profiles to correct the issue for the 2018 Series and will remove all data from the base
profiles for those entities that want their data removed before the 2019 Series.

Agenda Item 7b – Future Training Needs:
Nate Morris stated that MOD training can be offered if there is enough interest from data
submitters. Anthony Cook stated that training would be held closer to June/July if scheduled.

AI: SPP Staff to send an email to gauge interest in MOD training and possibly determine
dates around June/July.
AI: Post the MOD training material to GlobalScape.

Agenda Item 8 – Engineering Data Submission Tool (EDST) Status:
Eddie Watson stated that development of the Engineering Data Submission Tool is complete and
small group testing was performed. Additional enhancements are being considered based on
feedback from testing. SPP Staff is currently reviewing the developed User’s Manual. Large
group training will in April.

Agenda Item 9 – 2017 Working Group Survey:
Nate went over the results of the Working Group Survey for the MDWG. Anthony Cook asked
that comments be made specific to the MDWG and not blanket statements that cover other
working groups as well.

Agenda Item 10 – Misc.:

- **Agenda Item 10a – Meeting Registration:**
 Anthony Cook stated that everyone needs to make sure to keep their registration current
 because it helps ensure room capacity is adequate and makes sure there is enough food or
 food is not wasted.

- **Agenda Item 10b – Siemens Aha Ideas:**
 Anthony Cook reminded everyone that Siemens has an idea submission mechanism that allows
 individuals to vote on ideas which will move them up on the implementation plan. He stated that
 SPP Staff will send out a list of ideas that individuals can vote on if desired.

AI: SPP Staff to send out list of Siemens Aha ideas.

- **Agenda Item 10c – Demonstration of Power Flow Checker Program:**
 SPP Staff will perform another net conference if desired.

- **Agenda Item 10d – Future F2F Meetings:**
 Nate Morris asked everyone how many face to face meetings are desired and when in the year
to hold them.

 - The consensus is to have one or two a year and scheduled around the TWG meetings.
 - Ideally to be in May, July, or Fall and not during the model data submission period.
 - Top locations are Oklahoma City, Denver, and Little Rock
• Requested to look into including consultants that might be able to get CEUs for PEs.

– **Agenda Item 10e – Standard Efficiency Review Email:**
 Anthony Cook mentioned that some of the standards are being retired and if anyone is interested to be sure to look over the email sent by Shannon Mickens on January 15, 2018.

– **Agenda Item 10h – Meeting Survey: QR Code:**
 Anthony Cook stated that surveys can be set up for each meeting so that individuals can fill out that would allow the group to get instant feedback and hopefully improve meeting efficiency going forward.

Agenda items 10f and 10g were tabled for a later meeting.

Agenda Item 11 – Administrative Items:

– **Agenda Item 11a – Summary of Action Items:**
 - SPP Staff and DC Tie Entities meet to improve DC Tie coordination
 - SPP Staff to look into tracking docucode issues being corrected each pass and added to the Report Card.
 - Data Submitters to provide ideas on MOD Matrix update for possible new types and statuses for the March meeting.
 - Modeling Taskforce to discuss the modeling practice of generation without firm transmission service and draft language for the 2019 Series.
 - Manual Taskforce to discuss the modeling practice of grid switching generation and draft language for the 2019 Series.
 - SPP Modeling Staff to work with SPP Operations and SPP Planning and possibly ERCOT to see what can be done procedurally.
 - SPP Staff to send an email to gauge interest in MOD training and possibly determine dates around June/July.
 - Post the MOD training material to GlobalScape.
 - SPP Staff to send out list of Siemens Aha ideas.

Future Meetings

- Net Conference: 1st Thursday of each month from 10:30-12:00am
- Face to Face to be determine.

Adjourn Meeting

Anthony stated that this was his last face to face meeting with the group and that Sunny Raheem would be replacing him as Staff Secretary. Nate Morris thanked Anthony for his time on the MDWG and for being flexible when helping data submitters.

With no further discussion, Nate solicited a motion to adjourn the meeting.

Motion: Reené Miranda motioned to adjourn the meeting. Alex Mucha seconded it. The motion passed unanimously.
The meeting was adjourned at 12:02pm.

Respectfully submitted,
Anthony Cook
SPP Staff Secretary
Southwest Power Pool, Inc.
MODEL DEVELOPMENT WORKING GROUP
January 23-24, 2018
OGE Offices, Leadership Square Building – 14th Floor, LSN 1406
211 North Robinson, Oklahoma City, Oklahoma 73102

• A G E N D A •
January 23: 8:00 p.m. – 5:00 p.m.
January 24: 8:00 p.m. – 12:00 p.m.

1. Administrative Items .. Nate Morris
 a. Call to Order
 b. Attendance
 c. Proxies
 d. Agenda Review (Action Item)
 i. Acknowledgement of preparedness to discuss meeting materials
 e. Previous Meeting Minutes (Action Item)
 i. December 7, 2017

2. 2018 Series Status ... SPP Staff
 a. Power Flow
 i. MDWG/ITP
 ii. Report Card and Data Coordination Workbook
 iii. ITP Dispatch (Pass 4 ECDI Implemented)
 b. Short Circuit
 c. Dynamics
 d. GlobalScape Implementation

3. Charter ... All

4. MOD Matrix .. All
 a. ITP Only Projects
 i. Swing Machine Allocation in Light Load (Derek Brown)
 b. Brainstorming Type/Status

5. MDWG Manual Updates (Action Item) .. Anthony Cook/Moses Rotich

6. Modeling Practices ... All
 a. Generation without Firm Transmission Service (Dustin Betz)
 b. Grid Switching Generation (Mark Reinart)

7. Model On Demand ... SPP Staff
 a. Project vs. Profile Data (Wayne Haidle)
 b. Future Training Needs

8. Engineering Data Submission Tool (EDST) Status ... Mitch Jackson

10. Misc. .. Anthony Cook
 a. Meeting Registration
 b. Siemens Aha Ideas
 c. Demonstration of Power Flow Checker Program (If Needed)
 d. Future F2F Meetings
 e. Standard Efficiency Review Email
 i. Sent by Shannon Mickens on 1-15-2018
 f. 2019 MDWG Models dispatched by SPP
 g. 2018 Series ITP to MMWG Conversion
 h. Meeting Survey: QR Code

11. Administrative Items ... Nate Morris
 a. Summary of Action Items
 b. Future Meetings
 c. Adjourn
Southwest Power Pool, Inc.
Model Development Working Group
Net Conference
December 7, 2017:
1:00 P.M. – 3:00 P.M.

• M I N U T E S •

Agenda Item 1 – Administrative

The meeting was called to order at approximately 1:09 p.m. The following MDWG members were in attendance:

MDWG Members present:

<table>
<thead>
<tr>
<th>MDWG Member</th>
<th>Present</th>
<th>Proxy</th>
<th>Proxy Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nate Morris</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derek Brown</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dustin Betz</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Boshears</td>
<td>NO</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Jerad Ethridge</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joe Fultz</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wayne Haidle</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holli Krizek</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reené Miranda</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alex Mucha</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gimod Olapurayil</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scott Schichtl</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jason Shook</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liam Stringham</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthony Cook</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>Westar Energy</td>
</tr>
<tr>
<td>Nebraska Public Power District</td>
</tr>
<tr>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Oklahoma Gas & Electric</td>
</tr>
<tr>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Oklahoma Municipal Power Authority</td>
</tr>
<tr>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Arkansas Electric Cooperative Company</td>
</tr>
<tr>
<td>GDS Associates</td>
</tr>
<tr>
<td>Sunflower Electric Power Corporation</td>
</tr>
<tr>
<td>Southwest Power Pool, Inc.</td>
</tr>
</tbody>
</table>

The following guests were also in attendance:

Kevin Foflygen, Jerry Bradshaw – City Utilities of Springfield
Scott Rainbolt, Martin Green – American Electric Power
Daniel Benedict – Independence Power & Light
David Sargent – Southwestern Power Administration
Jarrod Wolford – Northeast Texas Electric Cooperative
James Thomas, Daryl Huslig – Oklahoma Gas & Electric
Bruce Doll, Armin Sehic – Municipal Energy Agency of Nebraska
Alan Burbach – Lincoln Electric System
John Turner – Board of Public Utilities
John Mayhan, Tom Mayhan– Omaha Public Power District
Meeting Agenda

Following the roll call, the group was asked if they had any issues with or modifications to the agenda as presented. It was requested to add items to discuss the new Engineering Data Submission Tool, Power Flow Checker Program, and SPP Staff changes. These items have been added under item 7a.

Motion: Derek Brown made the motion to approve the agenda with additions. Dustin Betz seconded the motion. The motion passed unanimously. (Attachment 1 - MDWG Meeting Agenda 20171207.docx)

Previous Meeting Minutes

The group was asked if there were any proposed edits to the November 1, 2017 meeting minutes. No one stated any issues with the minutes.

Motion: Jerad Ethridge motioned to approve the November 1, 2017 meeting minutes as presented. Derek Brown seconded the motion. The motion passed unanimously. (Attachment 2 - MDWG Minutes_11-01-2017.docx)

Agenda Item 2 – 2018 Series Dynamic Build:

Michael Odom presented on the draft dynamic schedule. There were comments about the time not being sufficient for the Stakeholders to review the models. Others thought the schedule was sufficient as presented. Chris Colson offered to bring some ideas to future MDWG discussions related to allotting more time for Stakeholder review.

Motion: Jason Shook motioned to approve the schedule as presented. Derek Brown seconded the motion. The motion passed unanimously. (Attachment 3 - 2018 MDWG Dynamics Model Build.xlsx)

Michael then presented on potential dynamic model build improvements. Derek Brown asked Staff to state requirements for dynamic loads in the data request for the 2018 Series Dynamic build. Derek also asked that the CMLD model data request be included in the initial data request by SPP and to work with Scott Jordan to ensure it aligns with the DLTF effort. Sam Zewdie asked SPP to keep in mind the models that don’t align with the MMWG for these load models. It was requested to benchmark Full vs. Reduced cases and further discuss the need for both at the next meeting.
AI: Benchmark Full vs. Reduced case

Agenda Item 3 – New Membership:

Nate presented Alex Mucha and Gimod Olapurayil as new members to the MDWG. Anthony followed up that the MDWG can review the nominees for any future opening prior to filling any vacancies; however, the SPP President will still make the final selection.

Agenda Item 4 – Future Meetings:

Nate asked for a doodle poll to be sent out for the weeks of January 22nd and 29th to check for availability for a face to face meeting. Future net conferences will be the first Thursday of each month from 10:30 am – noon.

Al: Send out doodle poll for January 22nd, 29th to see about availability for a face to face meeting. Set up conference call notices for first Thursday of every month from 10:30 am -noon.

Agenda Item 5 – MDWG Manual Updates:

Anthony presented the proposed manual changes on an individual basis. The group decided to approve the updates based on individual sections.

Motion: Jerad motioned to approve section 2.A.1. Reené seconded the motion. The motion passed unanimously.

Motion: Gimod motioned to approve section 3.A.3. and allow the Manual Taskforce to re-word item (g) to incorporate the paragraph following, keeping the same meaning. Jason seconded the motion. The motion passed unanimously. (Attachment 4 - SPP MDWG Model Development Procedure Manual (public)_v15_Red-lined.docx)

Al: Add language related to the Bus, Loads, Generators, Device Control, Net Schedule Interchange profiles in the newer version of the manual.

All other updates were tabled for the next meeting due to time constraint.

Agenda Item 6 – Model Build Status Update:

Moses gave an update on the status of the power flow model build. He reminded the group to read the posting emails for any updates, review and fix any docucode issues that have shown up in previous passes. He further stated that loads and interchange would be locked down after the 22nd of December and any changes to this type of data will have to go through the SPP Management/MDWG/TWG. Some other items briefly discussed included:

- Committing MOD projects with effective dates on or prior to 11/30/2017 to MOD base case
- Participation in the model build
- Pass 1 short circuit model build posting
Agenda Item 7 – Administrative Items:

Due to the lack of time, The EDST discussion was tabled until the next meeting. The demonstration of the Power Flow Checker Program was held after the meeting for those that wanted to see it. Nate announced that Anthony Cook will be changing groups with SPP and will be transitioning out of the MDWG and model building in 2018.

Summary of Action Items

- Benchmark Full vs. Reduced case.
- Send out doodle poll for January 22nd, 29th to see about availability for a face to face meeting. Set up conference call notices for first Thursday of every month from 10:30 am - noon.
- Add language related to the Bus, Loads, Generators, Device Control, Net Schedule Interchange profiles in the newer version of the manual.

Future Meetings

- Net Conference: 1st Thursday of each month from 10:30-12:00am
- Face to Face to be determined either week of January 22nd or 29th.

Adjourn Meeting

With no further discussion, Nate solicited a motion to adjourn the meeting.

Motion: Derek motioned to adjourn the meeting. Jerad seconded it. The motion passed unanimously.

The meeting was adjourned at 3:07pm.

Respectfully submitted,
Anthony Cook
SPP Staff Secretary
Southwest Power Pool
Model Development Working Group
Charter
January 23, 2018

Purpose

The Model Development Working Group (MDWG) is responsible for the coordination, development, and maintenance of transmission system planning models in accordance with Southwest Power Pool (SPP) Planning Criteria, Regional Standards, and procedures. The MDWG is also responsible for supporting development of interconnection wide models by providing SPP transmission system planning models and related information to the Eastern Interconnection Reliability Assessment Group (ERAG) Multiregional Modeling Working Group (MMWG).

Scope of Activities

In carrying out its purposes, the MDWG will:

1. Provide oversight and coordination of the activities of MDWG-initiated task forces.

2. Develop and maintain the MDWG Model Development Procedure Manual.

3. Develop, maintain, and coordinate steady state, short circuit, dynamic, and geomagnetic disturbance models in accordance to the SPP Planning Criteria, SPP Regional Standards, and procedures.

4. Work with SPP Staff and the Transmission Working Group (TWG) to determine the models that should be used in SPP, basis for the models, and how they are modified to ensure that the transmission system planning models support the needs of SPP and SPP Organizational Groups.

5. Review and monitor existing and proposed NERC Reliability Standards for impacts to the development, maintenance, and coordination of SPP transmission system planning models. Coordinate responses to new and proposed standards with SPP and other SPP Organizational Groups.

6. Support the SPP submission of modeling data to the ERAG MMWG for the SPP transmission system. Coordinate the incorporation of ERAG MMWG modeling information for facilities external to the SPP transmission system into the SPP models.

7. Respond to assignments from the TWG, Markets and Operations Policy Committee (MOPC), or the Board of Directors.
Representation

The MDWG membership consists of a minimum of 8 and up to 14 representatives from the SPP membership, including the chair and vice-chair.

Duration

Permanent.

Reporting

The MDWG reports to the TWG. As necessary the MDWG may appoint a member of the MDWG as a liaison to other working groups.
Version History

Original: September 1985
Version 2: August 2006
Version 3: November 2009
Version 4: August 2014
Version 5: September 2014
Version 6: October 2014
Version 7: May 2015
Version 8: June 2015
Version 9: November 2016
Version 10: June 2017
Version 11: August 2017
Version 12: September 2017
Version 13: September 2017
Version 14: October 2017
Version 15: November 2017
Version 16: January 2018
Disclaimer

Southwest Power Pool, Inc. (SPP) hereby disclaims any warranty, express or implied, as to the accuracy, completeness, timeliness or availability of the information provided within this document. Use of the information within this document in any manner constitutes an agreement to hold harmless and indemnify SPP, its employees, its Members and any consultants or entities performing work with or for SPP or its Members, from all claims of any damages or liability for actual, indirect, incidental, special or consequential damages sustained or incurred in connection with the use of or inability to use the information within this document.

Neither SPP nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by SPP or any agency thereof. SPP does not warrant the accuracy, interpretation, capability or functionality of any of the information, products or services mentioned within this document. Users are advised to verify the accuracy of this information with the original source of the data.

Model Disclaimer

SPP models contain proprietary information intended for use only by the designated recipient. Any other use is strictly prohibited. SPP models shall not be used in any manner for commercial purposes. The models may include projects that will change or not be constructed. SPP does not warrant the accuracy, interpretation, capability or functionality of any of the information, products or services included in these models. Users are advised to verify the accuracy of this information with the original source of the data.

Copyright

The copyright on the information contain herein is intended to protect the members of SPP, as well as any consultants or entities performing work with or for SPP or its member base.

This manual is the exclusive copyrighted material of SPP. Permission is implicitly granted to copy and distribute (via computer network or printed form) in whole or in part (with appropriate citation) EXCEPT when such materials will be used, in whole or in part, within a commercial publication (printed or otherwise) or when SPP will be quoted in commercial materials, forums, or publications. Commercial use of these materials requires express written authorization from a duly authorized officer of SPP.

Material contained herein is to be used for the benefit of SPP and/or its membership but is not limited to SPP and/or its membership. Any inquiries about this copyright should be directed to the SPP Communications Department, 201 Worthen Drive, Little Rock, AR 72223-4936, telephone (501) 614-3200, or Communications@spp.org.
1. GENERAL INFORMATION

A. Purpose
To provide model data requirements and reporting procedures for use by the Southwest
Power Pool, Inc. (SPP) system representatives for the building and updating of the SPP
steady-state, dynamics, and short circuit models. Proper use of this document should aid
in the coordination between systems, consistency in reporting of data, and realism of the
model developed.

B. General Data Reporting Responsibilities
The SPP data reporting entities are responsible for the following categories of system
modeling data:

1) Steady-State
2) Short Circuit
3) Dynamics

Steady-State models are developed for an annual series of SPP cases, including an
annual series of ERAG MMWG cases. Specific models are prepared and modified for
use in SPP designated studies as required by SPP Regional Tariff and Planning Criteria.

Short Circuit models are developed annually using a subset of the Reliability Steady-
State models. All base MDWG steady-state models will include sequence data
(including applicable mutual line impedance data) for the SPP footprint. The following 3
versions of short circuit models will be built:

1. MDWG steady-state base model
2. MDWG steady-state with PSS®E Classical assumptions
3. Maximum Fault case

The Base MDWG Short Circuit models are built by performing the following steps:
• Extract the SPP RAW and SEQ data with ties from the final MDWG steady-state
 model
• Extract the first tier company’s RAW and SEQ data without ties from the final
 SERC Short Circuit model built by the Short Circuit Database Working Group
 (SCDWG)
• Merge the two data sets together.

The Classical assumptions MDWG Short Circuit Models are built by performing the following step:

• Apply Classical assumptions to the Base MDWG Short Circuit model as described in the PSS®E Program Operation Manual

Maximum Fault cases are built by performing the following steps:

• Place in-service (Apply a status of ‘1’) all SPP planned and available existing generation and transmission facilities to the Base MDWG Short Circuit model
• Apply Classical assumptions

The Dynamics Model is also updated annually with current generator unit information. Steady-State models are used in conjunction with dynamic data to run dynamic simulation.

System representatives should be responsive with good modeling techniques. SPP data models are used by individual systems for studying future needs in developing construction forecasts. Not planning a major expenditure by one year due to inaccurate data could be very expensive, since funding allocation for major construction projects requires more time resources. In addition, ATC, megawatt-mile and incremental losses are currently being calculated with these Steady-State models. With the large amount of interconnection within SPP, the impact of one system on another must be recognized and respected. Therefore, each system should prepare data consistent with its most recent official system forecasts in all data submitted to SPP including Energy Information Agency (EIA-411) Data. It is also important that the models represent the expected operation of the SPP system consistent with this manual and Planning Criteria.

Entities in the SPP Planning Coordinator region that are not members of the SPP but required to submit data (i.e. IPPs, Municipalities) will submit data directly to the Transmission Owner or Balancing Authority in which their system resides. Upon review (i.e. data accuracy, quality) by the Transmission Owner or Balancing Authority the data will then be provided to the SPP during the annual MDWG case type update process. The data submitted will be in the standard PTI format as specified in the MDWG Model.
Development procedure manual. All non-SPP members that are responsible for submitting this data should directly coordinate with the Transmission Owner or Balancing Authority on timing for sending data, as well as any special requirements in data formatting.

In an effort to determine who is collecting/submitting data for whom, all NERC registered entities within the SPP PC footprint (MOD-032-1: applicable to BA, GO, LSE, RP, TO, TP, and TSP) shall fill out the data coordination workbook to notify SPP if data is being submitted directly to SPP or through some other entity(ies) on behalf of your company. Likewise, SPP shall be notified if your company is submitting data on behalf of another entity(ies).

C. Confidentiality and Proprietorship

The representation of future system elements in SPP data models is not an agreement to construct these elements when shown in the models or at any time. The configuration of each model system only reflects the necessary changes that the individual model system needs for maintaining reliable operation. The results of studies obtained through use of the data models developed by SPP will be the sole responsibility of the receiving party. The recipient of SPP data models must assure confidentiality and proprietorship.

2. **SCHEDULE**

As with all schedules, the meeting of deadlines is most critical. All system representatives must familiarize themselves with the schedule well in advance of all deadlines. This will alleviate any problems with the timing of data submittal and data reviews. The schedule for model development will be sent with the first data request as well as posted on the SPP corporate website, www.spp.org.

A. Steady-State and Short Circuit Model Development

1. **Introduction**

 The MDWG Steady-State and Short Circuit models are developed using data gathered through the SPP database Model On Demand (MOD) in conjunction with the Data Submittal Workbook. MOD data is divided into three parts: a Base Case, Projects, and Profiles (Bus, Loads, Generation, and Device Control). Modeling updates for transmission system topology can be made by submitting a Project to MOD. Non-topological modeling updates that are season specific can be made by submitting Profiles to MOD. Additional required data is submitted through the Data
Submittal Workbook which is identified in the data preparation section of this manual.

SPP MDWG Steady-State and Short Circuit Models are published according to the approved schedule.

2. AC Contingency Analysis
SPP will perform AC Contingency Analysis on all models contained in the steady-state case type set. The purpose of this contingency analysis is to validate the models. Member updates for errors found due to contingency analysis are to be submitted during the next member data submission period per the latest MDWG model building schedule.

B. Dynamic Model Development

1. Introduction
The MDWG Dynamic Models include full MMWG cases and machine reduced cases. The initialized no-fault models can be solved with quarter-cycle and half-cycle time steps. The MDWG Dynamic model Update is used to support SPP reliability studies and ERAG MMWG Dynamic model requirements. It is important for all generating entities that interconnect to the SPP transmission to support the Regional Transmission Organization with current detailed dynamics data in the proper SPP model format. The current MDWG Dynamic Model Format is PSS®E dynamics DYRE and RAWD formats.

The Dynamics Model data includes:
 a. Steady-State models
 b. Dynamics model data in Siemens PTI PSS®E DYRE format
 c. User written model source and object code (includes wind farms)
 d. ERAG MMWG System Dynamics Database (SDDB)
 e. SDDB data update worksheet

SPP MDWG Dynamic Models are published according to the schedule in Section 15 B.
3. MODEL DEVELOPMENT

A. Data Preparation

The following section describes important items that must be followed in the development of a steady-state model in preparing the data for publishing new models or updating existing models.

1. The data listed in Attachment 1 of the NERC Standard MOD-032-1 located on the NERC website.
2. MOD data should be kept current for each pass during the MDWG model build.
3. The Data Submittal Workbook contains informational data as well as modeling data that Data Submitters shall keep current for each pass of the MDWG model build.
 a. Transaction – Firm and non-firm reservations with other entities that shall be coordinated before submission to SPP (Reference appendix VIII for more information).
 b. Generator Data – Required generator data that is not otherwise captured in the models.
 c. SPP Modeling Assignments – Contains PSSE modeling area, owner, zone, and bus range information pertinent to SPP.
 d. Load Mapping – Identify loads not served by native Control Areas.
 e. Data Dictionary – List of all buses in the models that includes long names, voltage level, area, owner, and EIA plant codes.
 f. Interregional Ties – PC to PC branch and transformer ties that shall be coordinated before submission to SPP.
 g. Outages – Outages known during the annual model building process for buses, generators, branches, transformers, and shunts with a duration of at least six months shall be modeled. Data Submitters are responsible for annotating known outages to be modeled within the data submittal workbook, as well as ensuring that the known outages are correctly modeled in the appropriate season(s) when the known outage is scheduled. MOD projects shall be submitted with effective dates corresponding to the scheduled period of the known outages.
Table 1: Season Date Range and Cutoff Dates

<table>
<thead>
<tr>
<th>Season</th>
<th>Date Range</th>
<th>Cutoff (On or Before)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>April 1 – May 31</td>
<td>May 1</td>
</tr>
<tr>
<td>Light</td>
<td>April 1 – May 31</td>
<td>May 1</td>
</tr>
<tr>
<td>Summer</td>
<td>June 1 – September 30</td>
<td>August 1</td>
</tr>
<tr>
<td>Summer Shoulder</td>
<td>June 1 – September 30</td>
<td>August 1</td>
</tr>
<tr>
<td>Fall</td>
<td>October 1 – November 30</td>
<td>November 1</td>
</tr>
<tr>
<td>Winter</td>
<td>December 1 – March 31</td>
<td>February 1 (yyyy+1)*</td>
</tr>
</tbody>
</table>

*Example of Winter: 12/1/2017 – 3/31/2018; yyyy+1 = 2018

Steady-State and Short Circuit Data Format

PSS®E and MOD Users

The transmission modeling software approved by the SPP membership for performing planning and reliability studies is the Power Technologies Incorporated, Power System Simulator for Engineering (PSS®E) software. Data submitted for the building of the base SPP MDWG case types (models) needs to be in a format consistent with that used in PSS®E. The data shall be submitted via the SPP Models On Demand (MOD) Web Portal. Data submitted should be compatible with the MOD and PSS®E versions currently specified by SPP.

Non-PSS®E and Non-MOD Users

For those non-PSS®E users, load and generation profile data may be submitted via the Profile Submission form provided by SPP. SPP will aid with the submission of all other steady-state data in the correct PSS®E and MOD data formats. Any version changes will be discussed in the annual training provided by SPP.

Dynamic Data Format

PSS®E Users

Dynamics data needs to be submitted in the form of a flat text file or dyre file compatible with Siemens PTI PSS®E dyr file software. Dyre file submittals can be of changes to individual components from the existing dyre entries or of entire new representation of machines. Dynamic ready models are developed using the PSS®E software program. The data should be submitted via [GlobalScape](https://www.globalscape.com) or email. Data submitted must be compatible with the PSS®E version currently specified by SPP.

Non-PSS®E Users

Dynamics data needs to be submitted in the form of a flat text file or dyre file compatible...
with Siemens PTI PSS®E software. Siemens PTI PSS®E Software contains dyre file models for most conventional machines, exciters, governors, SVCs, HVDC ties, wind resources, and solar resources. SPP Modeling staff will work with the responsible entity or its designee to translate operational test data into the appropriate dyre file format compatible with the PSS®E version currently specified by SPP.

The members are expected to contact the SPP Modeling Staff if there are any additional questions regarding the data format.

Responsible Entities

Data owners are responsible for providing the data necessary to model their assets to its Transmission Planner(s) and Planning Coordinator(s) as described in this document. Data owners and their respective data submission responsibilities are noted in the NERC standard MOD-032-1.

- **Generator Owners (GO) and Resource Planners (RP)** are responsible for submitting modeling data for their existing and future generating facilities respectively.
- **Load Serving Entities (LSE)** are responsible for submitting modeling data for their existing and future load corresponding to the case types developed.
- **Transmission Owners (TO)** are responsible for submitting modeling data for their existing and future transmission facilities.
- The Planning Coordinator or Transmission Planner can request other information necessary for modeling purposes from the BA, GO, LSE, TO, or TSP.

Typical Annual Models

<table>
<thead>
<tr>
<th>Season</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Annual Spring Peak</td>
<td>9 Annual + 1 Summer Peak</td>
</tr>
<tr>
<td>2 Annual Summer Shoulder</td>
<td>10 Annual + 1 Fall Peak</td>
</tr>
<tr>
<td>3 Annual Summer Peak</td>
<td>11 Annual + 1 Winter Peak</td>
</tr>
<tr>
<td>4 Annual Fall Peak</td>
<td>12 Annual + 2 Summer Peak</td>
</tr>
<tr>
<td>5 Annual Winter Peak</td>
<td>13 Annual + 2 Winter Peak</td>
</tr>
<tr>
<td>6 Annual + 1 April Minimum</td>
<td>14 Annual + 6 Summer Peak</td>
</tr>
<tr>
<td>7 Annual + 1 Spring Peak</td>
<td>15 Annual + 6 Winter Peak</td>
</tr>
<tr>
<td>8 Annual + 1 Summer Shoulder</td>
<td>16 Annual + 10 Summer Peak</td>
</tr>
</tbody>
</table>

The typical yearly models developed by the SPP MDWG, as identified within the NERC TPL reliability standards, encompass both near-term (years one through five) and longer-term (years six through ten) transmission planning models. The SPP models are defined in the **Annual Models** table above with those transmission planning models representing
the near-term planning horizon consisting of the MDWG case types 1 through 13 and those representing the longer-term planning horizon consisting of the MDWG case types 14 through 16. The longer-term models may be incremented or additional models may be included as required to support ERAG MMWG.

The annual series of models are developed by SPP staff with input from the Model Development Working Group and the Transmission Working Group.

The schedule for submission to data and list of MDWG models (case types) can be found on the SPP corporate website, www.spp.org.

Transactions modeled in all base cases should be limited to expected firm schedules and should not include other transfers such as emergency power or opportunistic economy energy even though they may be provided for in contractual agreements. Due to FERC’s ruling of Roll-over rights, Long Term Firm Transactions should be considered in the models that extend into the future even if the transaction has a stop date. For a transaction to be considered firm, the transaction must be confirmed at both the source end and the sink end. Southwest Power Pool will do its best to confirm delivery of transactions outside of the Pool boundaries.

Firm transmission load includes capacity dependent interruptible loads with buy through provisions. In other words load that may be interrupted if the source runs out of capacity should still be modeled if the load has a choice and opportunity to purchase power from another source. This firm transmission load should be modeled in all cases. The load modeling entity is responsible for scheduling the power from a source and updating the transaction worksheet (see Appendix VIII).

Load forecasting methodologies vary throughout the electric industry. SPP depends on load forecasts from Data Submitters to apply to the planning models. These load forecast amounts are to be Non-Coincident to the SPP region, meaning that the hour that a Data Submitter’s system experiences a peak demand for a particular season, might not be the same hour that SPP, as a region, experiences a peak demand. In order to bring consistency and equivalency to the load forecast data submitted to SPP, load forecast data shall be based on a 50/50 forecast.
A 50/50 load forecast relates to a forecasted load amount having an equal probability of being either higher or lower than the amount forecasted. The forecasted load value is at the 50th percentile of a normal or similarly shaped distribution curve and is typically discussed in terms of exceedance such that there is a 50% probability that the load forecast will be exceeded due to abnormal weather.

Some studies may require load forecasts other than a 50/50 load forecast and may be requested for such special studies. For example, a 90/10 load forecast has a 10% probability that the load forecast will be exceeded, which means the load forecast amount is higher than a 50/50 load forecast amount and would be considered atypical for general SPP transmission planning purposes.

There are various methods used to develop such forecasts and the forecasts are dependent upon many factors such as historical load values, temperature, humidity, economic forecasts, time of day, day of week, holidays, special events, and load uncertainty. Other factors, some of which are controllable, also impact the amount of forecasted load. Controllable Demand Side Management (DSM) and Distributed Energy Resources (DERs) are such factors.

Demand Side Management consists of activities or programs that an entity invokes to achieve a reduction in Demand. DSM consists of controllable and non-controllable systems. Load forecasts shall not be reduced for application of controllable DSM. There is control over whether or not the load will be shed by an operator or end-user and therefore cannot be guaranteed that the load will be reduced during peak hours. Load forecasts should be reduced for application of non-controllable DSM. This load has a high probability of being shed during peak hours without manual intervention. Distributed Energy Resources are power resources on the distribution system that can be aggregated together to provide power to meet Demand. For purposes of transmission planning, it is recommended that Distributed Energy Resources should not be applied to a Data Submitter’s load forecast amount for incorporation into the SPP planning models.

Summary of Data Submitter’s load forecast data comprisal:

- Non-coincident to the SPP region
- 50/50 load forecast
• Load forecast amount includes non-controllable Demand Side Management
• Load forecast amount excludes controllable Demand Side Management
• Load forecast amount excludes Distributed Energy Resources (recommended)

Seasonal peak models developed by SPP include: Summer Peak, Winter Peak, Spring Peak, and Fall Peak. These four seasonal models are built to represent the expected coincident seasonal peak based on each Data Owner/Data Submitter system peak load. Data Owner/Data Submitter peak load may not be coincident to the SPP Balancing Authority coincident peak.

In addition to the seasonal peak models, SPP develops two off-peak models. They include: a Light Load condition and a Summer Shoulder condition.

The Light Load model is developed with the intent to capture a Data Owner/Data Submitter system minimum load during the spring timeframe.

The Summer Shoulder model, also known as the seasonal on-peak average model is defined to be 70% - 85% of the total Summer Peak load level depending on the Data Owner/Data Submitter system.

Spring Peak (G): April 1st through May 31st
Summer Peak (S): June 1st through September 30th
Fall Peak (F): October 1st through November 30th
Winter Peak (W): December 1st through March 31st
Light Load (L): April 1st through May 31st
Shoulder (SH): 70% - 85% of Summer Peak model

1. **Area Summary Report**

The Area Summary Report is an important part of data preparation and should be the initial step of the update process. This report, though not part of the steady-state input forms, is an important part of the data coordination process. As such, the report should be distributed to all appropriate systems at least one week before the initial update data is due at the SPP Office. The standard area abbreviations listed in Section 6-B should be used on the area summary report and in the steady-state input data of area interchange and transactions. The following sequence of steps is to be
used in completing this report:

a. The system name and area number, along with the name and phone number of the person that prepared the report, should be entered at the top of the form in the appropriate location.

b. The area slack bus and bus number. The area slack bus is to adjust for individual system losses only. It is not necessary for the area slack bus to be used for area load control in actual operation. Generation dispatch should be made to prevent the area slack bus from going to negative power output or power output above the stated rating of the unit when accounting for area losses. It is best that the area slack bus not represent a base load unit. The estimated slack bus generation should also be entered (Item 7). There should be room left on the slack bus for generation movement up & down.

c. For consistency, it is important that each system continue using a particular area slack bus rather than choosing a different bus from year-to-year, unless a specific reason exists to justify such a change. There is a new row on the Area Summary Sheet to identify the slack bus. To aid in solution time of the cases, the area slack bus should be located on a relatively strong portion of the system.

d. The case year and season should be entered in the appropriate locations in chronological order.

e. The current system official load forecast should be entered as net load (Item 6).

f. The estimated losses should be entered (Item 5). The reference cases can be used as a starting point to estimate system losses.

g. Load equals net load minus estimated losses (Item 4).

h. Purchases and sales should be entered (Item 2). These values must be coordinated with the parties involved in the interchange transaction prior to data preparation. The algebraic sum of these transactions should be equal to the total area interchange.
i. Net power (Item 3) must equal net load (Item 6). Generation (Item 1) is equal to the net power plus interchange.

2. Tie Line Coordination

Each SPP system will receive a tie-line data comparison summary for the initial base case and after the final models are published. The member must coordinate with its neighbors on the tie line representation in the models being developed. This coordination should consist of:

--- Agreement on which bus is to be metered for area loss accounting,
--- The in-service and out-of-service dates, if applicable,
--- Tie line characteristics and ratings
--- System responsible for supplying the update data.

SPP Member tie data (Intra-SPP) is maintained in a MOD Project file. The majority owner of the tie is responsible for maintaining the tie’s steady-state, sequence, and ratings data.

SPP tie data with external entities (Inter-PC) is maintained in the MMWG PC tie line list. Entities must submit changes using the latest list, which will be posted with the latest case set. Changes are to be highlighted in order for SPP Staff to easily discern the submitted changes. The file name shall contain the company name of which is submitting the change. There will be other lower voltage SPP ties which are not listed in the NERC list. They will be checked using the SPP tie line reports.

3. Line and Transformer Data

Additions to the system tend to move from year-to-year based on changing load growth forecasts and budget requirements. As a result, future lines and transformers may move through several future cases. Line and Transformer Data is contained in MOD Projects and phases. The Project Type, Status, and Phase Effective Date determine if the data will be included in a particular model. The line and transformer data formats are found in Section 5.

The following steps should be considered when preparing line and transformer data:
a. The **device code** (Bus, Branch, Transformer) specifies what data is being added to the base case. The **action code** (Add, Modify, Delete) specifies the action to be taken with the Project data. Specifying the deletion of a bus will require a similar record to delete all associated or connected devices with the bus (lines, generators, loads, transformers, etc.) from the base case.

b. The "from bus," "to bus", and circuit number identify the line or transformer. The order in which bus numbers are entered is important for tie lines to identify which bus is metered for loss accounting in some data formats. The “from bus” is assumed to be the metered end (unless the “to bus” is entered with a negative) and the “to bus” area will collect loss responsibility. For transformers, this order is also important in all formats because it specifies to which bus the Load Tap Changer (LTC) will attempt to maintain voltage and/or which bus is tapped. The code U in the branch data allows the user to select proper metered and tapped side by always entering the tapped side as the “from bus” or first bus number after the change code. The “from bus” is the metered end unless the “to bus” or second bus number is a negative number. Remember to include the circuit identifier.

c. The positive and zero sequence branch impedance data shall be provided on a 100 MVA base (per unit value). The smallest allowable reactance is 0.00011 P.U. on a 100 MVA base. Reactance values less than minimum will cause the steady-state program to treat the line as a zero impedance line to reduce solution time.

d. The positive sequence and zero sequence line charging data (conductance and susceptance) shall be provided on a 100 MVA base (per unit value) as applicable. A default value of zero will be assumed if no data is provided. Line charging data will be divided in the appropriate units depending on the specific format being utilized. Accuracy is needed to ensure a proper voltage profile in the model.

e. Each SPP member shall rate transmission circuits in accordance with the SPP Planning Criteria (Section 7.2). This criterion calls for each member to compute, at a minimum, summer and winter seasonal ratings for each circuit element. Each Base Case (Network) and Project branch, two-winding and three-winding transformer must have a specified rate A (normal) and rate B (long-term
emergency) for spring, summer, fall, and winter. The ratings data format is in the MOD Procedure Manual.

f. The transformer tap and tap limits shall be specified. The use of LTC transformers should be kept to a minimum to help reduce the case solution time. Using LTC transformers for local area voltage control where no such transformer exists should be avoided. In general, regulating transformers should not be located at a bus with a regulating generator or other voltage regulating device; however, there may be exceptions based on current system topology and operating conditions.

g. Circuit mileage should be entered in the appropriate line length field of branch data. Ownership data for the line should also be entered in the appropriate fields of branch data. This mileage and ownership data will be used to validate and calculate Megawatt-mile for the SPP Regional Tariff. Circuit mileages should be coordinated on all jointly owned lines. Invalid line lengths result in inaccurate revenue allocations.

h. All NERC flowgates must be included in the data submitted by each region to the MMWG such that those flowgates are not equivalenced in the steady-state models. A flowgate is a selected transmission element or group of elements acting as proxy for the transmission network representing potential thermal, voltage stability, rotor angle stability, and contractual system constraints to power transfer. Enough detail should be added to model the flowgate accurately.

i. Transformer connection codes and transformer winding angle (phase displacement) shall be provided. The connection code data incorporates concepts of the transformer core type, the vector group (phase differences between windings, standardized with clock notation indicating phase displacement), and physical conductor orientation. The transformer winding angle further specifies the inherent phase shift between transformer windings based upon configuration (vector group). Data Owners are reminded that

1 Reference PSS/E Program Operation Manual section: Two Winding Transformer Zero Sequence Network Diagrams and Connection Codes or Three Winding Transformer Zero Sequence Network Diagrams and Connection Codes
changes to connection codes do not automatically alter the modeled phase displacement used for positive sequence load flow calculations.

4. Bus Data

For all SPP steady-state models, systems will model buses within their SPP allocated bus range (see Section 6-B). For the sake of consistency, the bus names and numbers should remain constant from case to case and year to year. All bus shunts will be modeled as switched shunt. The Switch Shunt may be locked. Any changes to bus names or numbers will be documented on the SPP Expanded bus name list. This will include renumbering buses as well as adding new or removing old buses from the models. When a change in bus voltage occurs, a new bus number will be given to the new higher voltage bus. This enables SPP to track when the old bus voltage changes. All interregional tie bus names should conform to the entries in the Master Tie Line Database as approved by the Regional MMWG Coordinators. All tie line bus names and numbers should be standard and unique within each area in all models in a case series. Changes in tie line bus names and numbers from one series to the next must be kept to a minimum to reduce changes in computer support programs. Unique generator bus names, base voltages, and unit id combinations should be consistent from case to case within a model series. The SPP Expanded bus name list can be used as a quick reference for new names. This will help ensure that the SPP bus names do not conflict with ERAG MMWG Standards.

The following steps describe options and data for most bus data formats:

a. The device code and the change code determine describes what action(s) are taken with the data supplied (addition, deletion, modification, etc...).

NOTE: When a bus is deleted or removed from service, all associated network devices (lines, transformers, loads, generators, ect.) must also be deleted or removed from the steady-state model within the Project.

b. As previously mentioned, the bus names and numbers should remain constant unless there is a particular reason for changing them. This will aid the consistency of the models developed. Bus names may be up to 12 characters with the first character, preferably, alphabetic rather than numeric. The name
should be left justified. The eighth character field of the bus name should be the SPP voltage code described as follows:

```
1 - Below 69 kV  4 - 138 kV  7 - 345 kV
2 - 69 kV        5 - 161 kV  8 - 500 kV
3 - 115 kV       6 - 230 kV  9 - 765 kV or above
```

The ninth through twelfth character fields of the bus name are reserved for the base kV designation (right justified). As associated with the voltage code, the generally used kV values are: 69.0, 115, 138, 161, 230, 345, 500 and 765.

c. For generator regulated buses, a desired voltage magnitude will be given. Generator buses should be modeled with operating characteristics as close to actual as possible. Generator ratings should also be specified for each generation bus (whether on or off-line) as described in SPP Planning Criteria Section 7.1. Generators shall model the gross output of the generating facility and explicitly model the station service auxiliary load. The practice of using generator for voltage support only (i.e. no real power output), should be avoided unless a synchronous condenser or static var controller physically exists on that bus or nearby in the system. When a generator is modeled offline (status 0), the MW (PGEN) and MVAR (QGEN) fields should be zeroed. Regulating transformers should not be located at a bus with a controlling generator or regulating shunt device.

d. Bus loads should be specified with the real and reactive values provided as a pair in all entries. The load should be modeled to reflect the expected in-service/out-of-service status.

e. When scaling area load, it is important to consider the reactive power as well as real power. This is particularly true when referencing a case of a different season. Realistic reactive load representation has a major effect on the overall case voltages. Reactive requirements are different for the various season models.

f. Capacitors, reactors, and SVCs represented in the models should be consistent
with actual seasonal operation. These devices should be used in future cases calling for local area voltage support, rather than falsely regulating a bus. Attention should be given to these installations in cases that are referencing a different season model. Tertiary reactors should be modeled on the low voltage bus of transformers if the tertiary is not modeled explicitly.

Do not model existing or planned shunts on the Bus record. Shunts should be modeled in the Switched Shunt Record unless they are line shunts and trip when the line is opened. Bus shunt voltage bandwidth must be wide enough to prevent “hunting” of shunt value during steady-state solution of base case or contingency analysis. The switched shunts can be modeled as fixed shunts with specified B initial value.

5. Load Data
Load data is maintained in MOD via a profile file which is applied to the model. Profiles, Loads can belong to an Area that is not the same as the Bus Area. Refer to Section 5-A-3 for load data formats. The default solution technique will solve the case with Tie Lines and Loads. The Tie Lines and Loads solution option assumes that the Loads Area generation serves the load.

The Non-Scalable Loads will be identified in the Non-Scalable Load worksheet of the Data Submittal Workbook. This allows model builders to modify models without changing the loads that are constant.

Loads that are owned by municipal utilities should be modeled with an identifier in front of the number (i.e. Rayburn County load one should have the ID “R1”). These loads should be maintained in the Load Mapping worksheet of the Data Submittal Workbook.

6. Generator Data
Check Generator MW and Mvar output to ensure the unit is within the PMAX, PMIN, QMAX, QMIN and Mbase limits per testing requirements in SPP Planning Criteria 7.1.1. Generator MW shall be set to “gross” level with auxiliary load modeled explicitly. Qmax and Qmin values in the models should be based on unit test data. Intermittent resources (e.g., wind and run-of-river hydro) should not normally be
dispatched beyond their net capability as established by SPP Planning Criteria 7.1 for the summer and shoulder cases. Energy storage (pumped hydro, battery, flywheel, etc.) shall be modeled with the generator rated capabilities and a dispatch amount (Pgen) no greater than the rated output that can be sustained continuously for a minimum of one (1) hour. Ensure accurate values of ZR and ZX. This data is not needed in normal steady-state and equivalent construction work, but is required for switching studies, fault analysis and dynamic simulation. For dynamic simulation, this complex impedance must be set equal to the sub unsaturated transient impedance for those generators modeled by sub transient level machine models, and to transient impedance for those modeled by classical or transient level models. Machine Base (MBASE) and Zero Impedance (ZSOURCE) values for the steady-state models must match dynamic data. The MDWG steady-state models will use the saturated subtransient impedance data for generators (X''di). Future Generators that are in the models but are not budgeted for construction need to be identified in the Generator Data worksheet of the Data Submittal Workbook.

When modeling mothballed and future retired units, the Pmax, Pmin, Qmax, and Qmin values should be modeled as zero. Decommissioned units should be removed from the models.

Shortfall Guidance Process:

A shortfall is defined as an instance of insufficient firm resource to supply firm load. Under no circumstances in the Near-Term Transmission Planning Horizon shall generating resources be dispatched in excess of the firm transmission rights allotted to that resource. In the Long-Term Transmission Planning Horizon, if the resources within a modeling area and firm transactions from neighboring modeling areas are insufficient to serve customer load, the following should be investigated as potential modeling solutions to the shortfall:

a. Coordinate reciprocal non-firm transaction(s) with other modeling area(s). All parties are required to add their respective coordinated reciprocal record(s) to the transaction worksheet of the data submittal workbook.

b. Future generation resources that have progressed, at minimum, to the Interconnection Facility Study (per Attachment V, subsection 8.9) stage in the Generation Interconnection (GI) queue, may be modeled (in the Long-Term Transmission Planning Horizon models only) following these requirements.
I. The in-service date shall be based on the expected in-service date of the GI study.

II. In order to identify future GI queued generation, the unit name shall be the GI gen number (e.g. GEN-2017-898) and contain a unit ID of Zx (where x is any second ID designation appropriate in PSS®E).

III. Projects files that add future generation shall have the appropriate Type and Status which can be found in the SPP MOD Project Type/Status Matrix.

c. Future exploratory generation resources may be modeled in the Long-Term Transmission Planning Horizon models following these constraints:
 I. In order to identify future exploratory generation, the unit ID of Zx (where x is any second ID designation appropriate in PSS®E) shall be used.
 II. When available, exploratory generation should be based upon the host TO Resource Plan.
 III. Projects files that add future generation shall have the appropriate Type and Status which can be found in the SPP MOD Project Type/Status Matrix.
 IV. The addition of exploratory generation shall be consistent with modeling practices that minimize the impact to power flows in neighboring transmission systems (e.g., exercise diligence in siting the exploratory generator topologically proximate to the load that uses its resource).

Note: The Generator Data worksheet data will be maintained to provide a convenient source of data for Member and SPP Staff use. Therefore accurate data in the Generation workbook is imperative. The official SPP generator data is in the MOD Base Case or Project.

7. Remote Generation Modeling Procedure
 a. Purpose
 This procedure assures that members adhere to a uniform process when modeling remote generation in SPP.
 b. Modeling Process
 If a member acquires remote generation outside their Control Area (steady-state model numbered area), the following modeling process should be followed:
(1) All buses should be assigned numbers that are in the host’s control area bus number range.
(2) Area Number/Name should be the host’s control area number.
(3) Zone Number/Name should be in the host’s control area zone range.
(4) Generation Owner Number should be the owner’s designated ID number and percentage ownership.
(5) The generation recipient should coordinate the output level and the inter-area transfer with the host control area.

c. Transaction Update
The transaction workbook should be updated to show a transaction from the control area where remote generation is located to the generation owner control area. If the remote generation is owned by multiple owners, then multiple transactions should be modeled.

8. Steady-State Data Check List
The steady-state data check list should be used as an aid for ensuring good model data. As the data and preliminary runs are reviewed for each model, the items should be checked off. A copy of this form can be found in Section 7.

9. Facilities Transferred to SPP’s Functional Control

The SPP FERC "Docket No. RT04-01-00 Volume 1", In the July 2 Order, the Commission: …(7) ordered that SPP file a list of all transmission facilities that will be transferred to its operational control and revise the Operational Authority White Paper ("OA White Paper") or Membership Agreement, or provide some other binding document, to reflect SPP’s clear authority to exercise day-to-day control over the appropriate transmission facilities within its footprint…

Attachment AI to the SPP Regional Tariff contains the criteria for inclusion of facilities that are considered "Facilities Transferred to SPP’s Functional Control". Transmission facilities meeting the definition set forth in Attachment AI must be included in the SPP MDWG Steady-State Models.

10. Owner Data and Line Mileage Data (SAS-70 Control)

Per SAS-70 requirements (i.e. – Loss calculations) SPP Loss models must be updated every June and October with current Owner Data and Line Mileage data. To meet the SAS-70 requirement the SPP models must include owner data and line-
mileage data. SPP Staff will obtain this data from the MOD Base Case and Projects; therefore; it is important that Members keep the data current in MOD.

11. Zone Range Assignments

a. MMWG Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Bus Numbers</th>
<th>Area Number</th>
<th>Zone Number</th>
<th>Owner Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire System</td>
<td>100,000 to 899,999</td>
<td>100 to 899</td>
<td>100 to 1,899</td>
<td>100 to 1,199</td>
</tr>
<tr>
<td>NPCC</td>
<td>100,000 to 199,999</td>
<td>100 to 199</td>
<td>100 to 1,899 and 1,100 to 1,199</td>
<td>100 to 199</td>
</tr>
<tr>
<td>RFC</td>
<td>200,000 to 299,999</td>
<td>200 to 299</td>
<td>200 to 1,899 and 1,200 to 1,299 and 1,800 to 1,899</td>
<td>200 to 299</td>
</tr>
<tr>
<td>SERC</td>
<td>300,000 to 399,999</td>
<td>300 to 399</td>
<td>300 to 1,300 to 1,399</td>
<td>300 to 399</td>
</tr>
<tr>
<td>FRCC</td>
<td>400,000 to 499,999</td>
<td>400 to 499</td>
<td>400 to 1,400 to 1,499</td>
<td>400 to 499</td>
</tr>
<tr>
<td>SPP</td>
<td>500,000 to 599,999</td>
<td>500 to 599</td>
<td>500 to 1,500 to 1,599</td>
<td>500 to 599 and 800 to 899</td>
</tr>
<tr>
<td>MRO</td>
<td>600,000 to 699,999</td>
<td>600 to 699</td>
<td>600 to 1,600 to 1,699</td>
<td>600 to 699</td>
</tr>
<tr>
<td>ERCOT (future)</td>
<td>700,000 to 799,999</td>
<td>700 to 799</td>
<td>700 to 1,700 to 1,799</td>
<td>700 to 799</td>
</tr>
</tbody>
</table>

b. SPP Area

Refer to the most current SPP Area Zone Assignments.
B. Data Transmittal

Transmitting data to the Southwest Power Pool can be accomplished as follows:

1. **ELECTRONIC ---** GlobalScape

2. **E-MAIL ---** planningmodeling@spp.org

The preferred method of submittal is through the “SPP MDWG File Sharing Site”, GlobalScape. Include a file (excel, word, or equivalent) with description of data files submitted and which to which models they apply.

The transmitted data file should include the title of the first case and area name, followed by the changes to the first case, title of the second case and the area name, followed by the changes to the second case, etc. See Section 6-B for a sample file format. Case title lines should include the case title in the following format examples: *04SP, *04FA, *04SH, *07SP (no spaces between characters).

C. Initial Run Review

After all systems prepare and submit data, an initial run is made which assembles all system data, checks for errors, and results in a solved case. The initial run shows all entered data and diagnostic messages. This data is shown first in the initial run printout. Each system should review the data changes and solved case, making corrections as needed in the subsequent runs.

1. **Area Interchange**

 The area interchange report shows the area control bus, generation on the area control bus, and the net area interchange. The detail of area interchange among SPP systems is shown in the transaction data. The transaction workbook will include the NODE, Provider, and OASIS reservation number. The transaction workbook will use code DDD for transactions that do not have an OASIS reservation number. This data should be checked to ensure accuracy. Discrepancies in the transactions between reporting systems will be noted in the diagnostic messages.

2. **Tie Line Metering**

 The tie line report shows the tie lines and inter-company power interchange for each
system. The tie line metered end should be verified, and should reflect line loss responsibility as accurately as possible. Any changes should be coordinated with the neighboring company involved.

3. **Area Totals**

The system generation and load should be checked on the system area summary. This data should be near expected values. The detail of generation is shown in the generation summary. If load is not the expected value, individual bus loads listed in the steady-state detail report should be examined. If loads were scaled from a reference case, the scaling factor should be checked. The load power factor should also be checked as power factors change seasonally. Check Power-factor of loads. The load supplying entities for the MDWG case types will validate each load power-factor with the most current system snapshot that represents that models load level (summer peak, winter peak, light load).

4. **Network**

Basic to the accuracy of the steady-state model is the accuracy of the network. The layout of the system representation should be checked. Purely conjectural facilities should not be included. Planned facilities which were modeled in previous steady-state models and have since been delayed or cancelled should be removed entirely from the steady-state model. These facilities cause solution problems for some steady-state programs if left in the model with an off-line status. Planned projects, including reactive resources such as capacitor banks, are to be included in the models. These projects are to be added through MOD in accordance with the MOD Type/Status Matrix of the Web Based Steady-State Model Development Procedure Manual.

5. **Review of Output**

The steady-state report should be checked for the flow on major transmission lines and selected bus voltages. This check can locate unusual results, which does not necessarily mean that data is in error, but rather indicates that additional checking of the model may be appropriate.

Three useful reports for locating problems include:

--- The voltage summary,

--- The overloaded branch summary, and
--- The generation summary.

a. **Voltage Summaries**

Low or high voltages may be caused by a number of factors. Shunt devices may be sized inappropriately. Capacitors should have a positive value and reactors should have a negative value. (Check the CAP/REAC column of the steady-state report). The bandwidth (difference between VSWHI and VSWLO) of switched shunt devices should be wide enough that switching one block of admittance does not move the voltage at the bus completely through the bandwidth, thus causing solution problems at the bus. It is recommended that the minimum voltage bandwidth be 4% if only switched shunts are used to regulate voltage. Switched shunts should not regulate voltage at a generator bus, nor should they be connected to the network with a zero impedance tie.

Transformer tap settings may also affect voltages. The steady-state report should be checked for tap settings. Particular attention to LTC-equipped transformers should be given to make sure the proper bus is regulated. A tap setting of less than 1.000 on the tap bus results in an increase in voltage on the non-tap bus. A tap setting greater than 1.000 on the tap bus results in a decrease in voltage on the non-tap bus.

The inclusion of LTC regulation makes tap setting more important. With LTC-equipped transformers, fixed taps may also exist. The LTC tap range should be adjusted to compensate for the effects of fixed taps if necessary. The minimum and maximum number of ULTC and NLTC taps should comply with common industry standard practices.

Transmission line or transformer impedance errors may also affect voltages if the errors are large. See Section 6-A. for guidelines of typical transmission line or transformer impedance data.

b. **Summary of Overloaded Branches**

This summary shows each overloaded circuit, the flow on the circuit, and the normal and emergency ratings. Overloading may be caused by an incorrect
rating. Both normal and emergency ratings should be given. Emergency ratings must never be less than normal ratings, though the ratings may be equal. The impedance of a circuit element or of a parallel element may also cause overloading. See Section 6-A for guidelines of typical transmission line or transformer impedance data.

c. **Generation Summary**

All buses with generation as well as all buses with voltage regulation are shown in this summary. Generators should not be modeled as unregulated buses.

The MW ratings, Mvar ratings, machine base (MBASE), and ZSOURCE must be supplied for each generator. Generator PMAX ratings should represent the net capability of each machine connected to the bus. Ratings should be adjusted seasonally in consideration of scheduled outages. The generation should be shown on the correct bus. Generation must not exceed the rating. Generator MBASE values should be equal to the nameplate MBASE rating of the unit. Each unit should be explicitly modeled and listed in the SPP Generation tab of the Data Submittal Workbook.

The generator workbook will be updated to include both the saturated and unsaturated impedance for each machine. Fuel types, especially wind farms, should be identified in the appropriate column.

The reactive output limits (MAX and MIN) should be realistic values as defined in SPP Planning Criteria. For generators, a general rule of thumb sets MVAR limits as:

\[
\begin{align*}
QT & \quad \text{MAX} = \text{one-half of MW rating} \\
QB & \quad \text{MIN} = \text{negative one-third of MW rating}
\end{align*}
\]

If the slack bus generation changes significantly from the input value, it indicates an error in the model data. Regulated buses are not limited to generators, but also include other equipment such as synchronous condensers and static var controllers. If the actual voltage does not match the desired voltage, a reactive limit will be reached. The desired voltage for each regulated bus should be checked seasonally.
The Generator Owners/Data Submitters of utility scale wind and solar resources shall provide an equivalent representation consisting of all collector bus(es) and the main power step-up transformer(s) from the collector bus(es) to the transmission point of interconnection (POI). Additionally, a single step-up transformer and feeder parameters for each connected generator model, from the generator terminals to a collector bus, shall be included in the equivalent representation, with wind/solar devices lumped together to represent the aggregate wind turbines or solar inverters in each collection network. The equivalent representation shall be an as-built representation (as reasonably as possible) with all transformer data reflective of manufacturer test report information. Any future changes or updates to equipment (wind turbines or solar inverters) or electrical topology shall include an updated equivalent representation to the Transmission Planner before submitting to the Planning Coordinator.

Generator facilities comprised of more than a single inverter (battery, flywheel, etc.) and other similar technology should have similar equivalent model representation. Figure 1 and Figure 2 below are illustrations provided for use as guidance for the equivalent representations of such renewable resources; however, Figure 2 shall be the representation in the planning models.

Generator Owners/Data Submitters should coordinate with their host Transmission Owners to obtain valid SPP bus numbers for use in the equivalent representation of the generator resources. Bus names shall conform to the bus naming section of this manual. There are several industry best practice documents explaining how to represent equivalent representation of generator resources (examples: WECC Wind Power Plant Power Flow Modeling Guide and PV Plant Power Flow Modeling Guide).
Figure 1: Detailed Wind and Solar Farm Representation (Not to be used for planning models)

Figure 2: Equivalent Wind and Solar Farm Representation (Required representation for planning models)
4. PERIODIC MODEL UPDATES

After the annual update process is complete, it may become necessary to perform an update to the information contained in the model(s). Some of the reasons for updating the model(s) and the procedure for doing so are listed below.

A. System Impact Studies/Expansion Options Studies (Long-Term)

SPP performs transmission planning studies and assessments for various eligible customers. These model sets are developed in accordance with the SPP Planning Modeling Process and include models used for the SPP Transmission Expansion Plan, Transmission Service Studies, and Generation Interconnection Studies, which all use the data submitted to MOD as a base for model development.

B. MDWG Updates

At some point after the current models are extracted out of MOD some data will need to be updated to reflect pertinent changes to the system (i.e., lost or added transmission capability, lost or added generation, improved data, etc…) There are several ways of submitting changes to the steady-state models.

Two of these methods are:

a. Using the steady-state update procedure in Section 5 to update MOD.

b. Submitting a PTI, IDEV format file to perform the RDCH operation. This method should only be used for profile changes. Each company should only submit one IDEV file per modeling pass. Under special circumstances topology changes can be submitted in a IDEV file as long as a MOD Project is submitted in MOD.

It is imperative that any information submitted to SPP be error free and complete to avoid delays in the implementation of the changes.

The most current update to the models will always be posted on the SPP file sharing site.

5. PROGRAM OPERATION

The SPP steady-state models are created, modified, and maintained utilizing the Power Technologies, Incorporated (PTI) Power System Simulator for Engineers (PSS®E)
software package. The PSS®E program is installed on SPP computer facilities located in Little Rock, Arkansas.

A. PTI-PSS®E Data Format

Steady-State data is input to the models from computer text data files structured in the formats described in the PSS®E Program Operation Manual Volume I, Chapter 4: Section 1.1. All data is read in "free format" with data fields separated by a comma (not blanks). Each type of data category is terminated by the specification of a zero in the first field of the record with the exception of the model identification data.

Data is added to the SPP steady-state models as specified in these format structures for records where no corresponding component is found in the model. The modification of existing data in the model is accomplished using the same format structure, except that only the values that need modification are specified.

Data may also be deleted from the models. When a bus is specified for deletion, all associated data for that bus will be removed (e.g., branches, transformers, generators, and loads). The user cannot delete a piece of equipment and then add it with new data. For example, to upgrade a bus from one voltage to another, the bus data must be modified. Data currently in the model is used as the default value for data fields not specified in the format.
1. Steady-State Solution

The steady-state solution will have “Area interchange control” with the “Tie Line and Loads” option selected to meet ERAG MMWG model building requirements.

a. The SPP transaction workbook must not include transactions for sales to loads in other control areas if the loads are specifically identified with source control area number. If the loads in an external control area are not identified with the source control area’s number, then a transaction is necessary to schedule to this load. See example below for more details for a load that Source Area XXX has the obligation to serve:

No Transaction Needed
Source Area: XXX
Sink Area: YYY
Sink Load: XXX

Transaction Needed
Source Area: XXX
Sink Area: YYY
Sink Load: YYY

b. Loads may be modeled on the foreign area bus as long as it is identified as belonging to the owning area.

c. SPP will identify remote SPP loads in the base cases, pass 1, pass 2, and pass 3 models.
B. TRANSMITTED DATA FILE EXAMPLES (Refer to MOD Procedure Manual)

C. PTI-PSS®E SHORT CIRCUIT DATA FORMAT

The SPP Short Circuit data is included in MOD Base Case (Network) and Project data. Short circuit data that is missing in the MOD Base Case must be entered in MOD via a MOD Project with the Project Type of Network and Project Status of Update. Missing Project sequence data must be updated by applying a sequence file to the Project in MOD.

Member submitted sequence via an IDEV file applied to a model will not be included in the next published model (Pass N or Final). The reason that sequence data is not carried over from one model set to the next model set is that sequence data is exported from MOD. Post MOD model processing IDEV files are not applied to the next model set; therefore, a MOD project which includes the sequence data must be submitted to MOD and accepted before it is included in the next MOD exported model.
6. SPP DATA

A. Typical Transmission Line or Transformer Impedance

These tables are only for the checking of reasonableness of line and transformer data and should not be used in data preparation for existing facilities.

TYPICAL TRANSMISSION LINE DATA

(100 MVA BASE)

<table>
<thead>
<tr>
<th>kV</th>
<th>Amps</th>
<th>R/mile</th>
<th>X/mile</th>
<th>(Mvar/mile) Charging</th>
<th>MVA</th>
<th>X/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>600</td>
<td>0.00540</td>
<td>.0143</td>
<td>0.00030</td>
<td>71</td>
<td>2.6</td>
</tr>
<tr>
<td>115</td>
<td>1200</td>
<td>0.00064</td>
<td>.0050</td>
<td>0.00084</td>
<td>240</td>
<td>7.8</td>
</tr>
<tr>
<td>138</td>
<td>1200</td>
<td>0.00045</td>
<td>.0038</td>
<td>0.00120</td>
<td>286</td>
<td>8.4</td>
</tr>
<tr>
<td>161</td>
<td>2000</td>
<td>0.00020</td>
<td>.0019</td>
<td>0.00220</td>
<td>558</td>
<td>9.5</td>
</tr>
<tr>
<td>230</td>
<td>2000</td>
<td>0.00010</td>
<td>.0010</td>
<td>0.0040</td>
<td>796</td>
<td>10</td>
</tr>
<tr>
<td>345</td>
<td>2000</td>
<td>0.00004</td>
<td>.00048</td>
<td>0.0091</td>
<td>1195</td>
<td>12</td>
</tr>
<tr>
<td>500</td>
<td>2000</td>
<td>0.00002</td>
<td>.00026</td>
<td>0.0170</td>
<td>1732</td>
<td>13</td>
</tr>
</tbody>
</table>

A typical transmission transformer’s impedance is approximately 8% on the OA rating base.

For example:
On a 345 kV Line that is 70 miles long –

R is: $70(0.00004) = 0.0028$

X is: $70(0.00048) = 0.0336$

Charging is: $70(0.0091) = 0.637$
B. System Abbreviations & Area Number Assignments

System Abbreviations & Area Number Assignments can be found on SPP's website, spp.org, under the documents section of the Model Development Working Group.

C. SPP Members

The SPP Members are identified on the SPP Website. See the “Members” link under “About SPP” on www.SPP.org.
7. FORMS – Area Summary Report

| CASE │ Generation │ Purchases (-)/Sales (+) To/From Area Name |
|------|-------------|---|
| | 1. Generation | X |
| | 2. Total Interchange | |
| | 3. Net Power (1-2) | |
| | 4. Load | |
| | 5. Losses | |
| | 6. Net Load (4+5) | |
| | 7. Slack Bus Generation | |
| | 8. Slack Bus Number & Name | |

Note:

<table>
<thead>
<tr>
<th>Area Name & Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared By:</td>
</tr>
<tr>
<td>Telephone Number:</td>
</tr>
</tbody>
</table>
7. FORMS – Steady-State Data Checklist

<table>
<thead>
<tr>
<th>CASE</th>
<th>BUS DATA</th>
<th>POWER FLOW DATA CHECKLIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Names - 12 characters</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage Codes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Factor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load - Real</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactive Load</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixed Shunts - Reactors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dynamic Shunts - SVC's</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Synchronous Condensors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generation - Dispatch/Net</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactive Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactive Limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulated Voltages</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generator Rating</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slack Bus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINE DATA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratings - Normal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emergency</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impedance Resistance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reactance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charging</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transformers - Taps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tap Ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulated Bus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER DATA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Net Area Interchange</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area Transactions</td>
<td></td>
</tr>
</tbody>
</table>

Note:

Area Name & Number:

Prepared By:

Telephone Number:
8. **ACRONYMS**

ATC – Available Transfer Capability
CAP – Capacitor
EIA – Energy Information Act
ERAG – Eastern Interconnection Reliability Assessment Group
ERCOT – Electric Reliability Council of Texas
FPC – Federal Power Commission
IDEV – Input Device (PSS®E Dialog Input Device Selection Activity)
LTC – Load Tap Changing
MAPP – Mid-Continent Area Power Pool
MAIN – Mid-American Interpool Network
MBASE – Machine Base
MDWG – Model Development Working Group
MMWG – Multiregional Modeling Working Group
Mvar – Megavar
MW – Megawatt
NERC – North American Electric Reliability Corporation
PSS®E – Power System Simulator for Engineers
PTI – Power Technologies, Inc.
pu – Per-unit
RAWD – Raw Data
RDCH – Read Change (Command to read in and change data in PSS®E)
REAC – Reactor
SERC – Southeastern Electric Reliability Council
SPP – Southwest Power Pool, Inc.
STEP - SPP Transmission Expansion Plan
TWG – Transmission Working Group
WSCC – Western Systems Coordinating Council
ZSOURCE – Zero Impedance

NOTE – A complete listing of other SPP acronyms can be found on the SPP website at www.spp.org. See the “Glossary and Acronyms” link under “Training”
9. **MDWG Contact List**

The MDWG Contact List can be found on SPP’s website, spp.org, under the documents section of the Model Development Working Group.

10. **SPP Model Release Guidelines**

A. SPP Model Release Guidelines

1. **Steady-State and Short Circuit Models**

 SPP Base Case steady-state models and short circuit models are available to all SPP members. SPP and its members, by participating in SPP base case development, grant authority to the other participating members and SPP to release SPP Base Case steady-state models or reduced network equivalents of those models to government agencies. The public may receive models by filling out a SPP models order form and signing the appropriate SPP Confidentiality Agreement. For more information on requesting Base Case steady-state models, contact the SPP Model Contact.

 Base case steady-state models of external systems, which are beyond the electrical borders of SPP and released under FERC Form 715 to government agencies, shall be the SPP models or a reduced network equivalent of the SPP models. If equivalized, such external models must be disclaimed, as equivalent representations not intended for study of the transmission systems in those external areas.

2. **System Dynamic Data Base and Dynamic Simulation Cases**

 SPP Dynamic Base Case Models are available to all SPP members. SPP and its members, by participating in MMWG dynamics database (SDDB) and dynamics simulation case development, grant authority to the other participating Regions, to receive and use the SDDB and dynamics simulation cases. Regional members may send dynamics simulation cases or dynamics data to third parties provided that the third party executes a SPP confidentiality/non-disclosure agreement. The MMWG Dynamics Database (SDDB) remains the property of and is for the sole use of the MMWG participating Regions of NERC and their members.

3. **SPP Model contact:**

 Please send all general modeling questions and concerns to planningmodeling@spp.org.

B. Request an SPP Map / Model

Questions? You may find it helpful to consult SPP Maps & Models FAQ.

If you are an SPP member, interconnection customer, transmission service customer (or their consultant) and would like to request an SPP Transmission Map or Model, please complete the appropriate forms below. (Requests for Joint & Interregional System Planning Models are addressed on [this page](#).) If you are requesting access on behalf of an organization other than your employer, a Consultant Authorization Form must also be submitted on your behalf.

[SPP Transmission Map Order Form](#)
[SPP Model Order Form](#)
[SPP Confidentiality Agreement](#)
[Consultant Authorization Form](#)

If you have obtained FERC CEII approval and would like to request additional CEII, please submit the appropriate SPP Form(s) and SPP Confidentiality Agreement, providing the requester's FERC CEII ID Number and attaching a copy of the FERC Authorization Letter (i.e., FERC Notice of Intent to Release).

Completed SPP Forms and the SPP Confidentiality Agreement should be e-mailed to SPP Customer Relations. The original, signed hardcopy of the SPP Confidentiality Agreement should be mailed to the attention of Susan Polk, 201 Worthen Drive, Little Rock, Arkansas 72223.

If you have questions or would like additional assistance, please contact SPP Customer Relations at (501) 614-3309.

Last Updated June 30, 2015

11. MDWG Case Type Set

The current MDWG Case Type Set can be found on SPP’s website, spp.org, under the documents section of the Model Development Working Group.

12. Error Screening

The following data error screening checks will be used to check case quality:

- Interchange and tie line data not matching the raw data will not be accepted until either the interchange data or the raw data are corrected. *
- All CNTB errors shall be corrected. (Exceptions will be documented.)
- All instances of mode=1 switched shunts with VHI – VLO < .005 per unit shall be corrected.
- Any regulation by any regulating device of a bus more than one bus away, except where there is a three-winding transformer in which case no more than two buses away, shall be corrected.
- All instances of TCUL transformers with more than 50 tap steps shall be corrected.
- All instances of voltage controlling bandwidth less than twice the transformer tap step size shall be corrected.
- All transmission lines 69 kV and above, transformers with a secondary voltage of 69 kV and above, and Generator Step Up (GSU) transformers shall not have overloads (loading above 100% of Rate A) in the base case. Exception: 10 year cases may have overloads.

* The effect of this check will be to delay acceptance of the applicable submittal until the problem is corrected.
13. Dynamics Data Submittal Requirements and Guidelines

A. Steady-State Modeling Requirements

1) All steady-state generators, including synchronous condensers and Static VAR Compensators (SVCs) modeled as generators, shall be identified by a bus name and unit id. All other dynamic devices, such as switched shunts, relays, and HVDC terminals, shall be identified by a bus name and base kV field. The bus name shall consist of eight characters and shall be unique within the Eastern Interconnection. Any changes to these identifiers shall be minimized.

2) Where the step-up transformer of a synchronous or induction generator or synchronous condenser is not represented as a transformer branch in the steady-state cases, the step-up transformer shall be represented in the steady-state generator data record. Where the step-up transformer of the generator or condenser is represented as a branch in the steady-state cases, the step-up transformer impedance data fields in the steady-state generator data record shall be zero and the tap ratio unity. The mode of step-up transformer representation, whether in the steady-state or the generator data record, shall be consistent from case to case within a model series.

3) Where the step-up transformer of a generator, condenser, or other dynamic device is represented in the steady-state generator data record, the resistance and reactance shall be given in per unit on the generator or dynamic device nameplate MVA. The tap ratio shall reflect the actual step-up transformer turns ratio considering the base kV of each winding and the base kV of the generator, condenser or dynamic device.

4) In accordance with PTI PSS®E requirements, the Xsource value in the steady-state generator data record shall be as follows:
 a) $X_{\text{source}} = X''_d$ for detailed synchronous machine modeling
 b) $X_{\text{source}} = X'_d$ for non-detailed synchronous machine modeling
 c) $X_{\text{source}} = \text{should be equal to locked rotor impedance for an induction machine}$
 d) $X_{\text{source}} = 1.0$ per unit or larger for all other devices

5) Generally, SVCs should be represented in steady-state as continuously variable switched shunts rather than as generators. In iterative steady-state solutions, a generator which hits a VAR limit on solution iteration will lock at that value, but a switched shunt will move off the limit in a subsequent iteration if appropriate. PSS®E dynamic library models compatible with either representation are available. If a user model representing particular SVC and control features is to be used and that model assumes generator representation, the SVC should be represented as a generator in the steady-state.

B. Dynamic Modeling Requirements

1) All synchronous generator and synchronous condenser modeling and associated data shall be detailed except as permitted below. Detailed generator models consist of at least two direct axis circuits and one quadrature axis equivalent circuit. The PSS®E dynamic model types classified as detailed are GENROU, GENSAL, GENROE, GENSAE, and GENDCO.

The use of non-detailed synchronous generator or condenser modeling shall be permitted for units with nameplate ratings less than or equal to 50 MVA under the following circumstances:
a) Detailed data is not available because manufacturer no longer in business.

b) Detailed data is not available because unit is older than 1970.

The use of non-detailed synchronous generator or condenser modeling shall also be permitted for units of any nameplate rating under the following circumstances only:

a) Unit is a phantom or undesignated unit in a future year MMWG case.

b) Unit is on standby or mothballed and not carrying load in MMWG cases.

The non-detailed PSS®E model types are GENCLS and GENTRA. When complete detailed data are not available, and the above circumstances do not apply, typical detailed data shall be used to the extent necessary to provide complete detailed modeling.

2) All synchronous generators and condensers modeled in detail per Requirement II.1 shall also include representations of the excitation system, turbine-governor, power system stabilizer, and reactive line drop compensating circuity. The following exceptions apply:

a) Excitation system representation shall be omitted if unit is operated under manual excitation control.

b) Turbine-governor representation shall be omitted for units that do not regulate frequency such as base load nuclear units, pumped storage units in pumping mode and synchronous condensers.

c) Power system stabilizer representation shall be omitted for units where such device is not installed or not in continuous operation.

d) Representation of reactive line drop compensation shall be omitted where such device is not installed or not in continuous operation.

3) All other types of generating units and dynamic devices including induction generators, static VAR compensators (SVC), high-voltage direct current (HVDC) systems, static compensators (STATCOM), wind turbines, and photovoltaic systems shall be represented by the appropriate PSS®E dynamic models.

4) All demand data shall include a load model which represents the expected dynamic behavior of the loads. Non-scalable loads greater than or equal to 10 MW are required to have a dynamic load model representation. For all other types of loads, absent detailed dynamic load models, the real portion (MW) of all demand data is converted to 100% constant current and the reactive portion (Mvar) of all demand data is converted to 100% constant admittance.

5) Standard PSS®E dynamic models shall be used for the representation of all generating units and other dynamic devices unless both of the following conditions apply:

a) The specific performance features of the user-defined modeling are necessary for proper representation and simulation of inter-regional dynamics, and

b) Standard PSS®E dynamic models cannot adequately approximate the specific performance features of the dynamic device being modeled.

6) When user-defined modeling is used, written documentation shall be supplied explaining the dynamic device performance characteristics. The documentation for
all user-defined models shall be provided as a separate document and must include the characteristics of the model, including block diagrams, values and names of all model parameters, and a list of all state variables. Any benign warning messages that are generated by the model code at compilation time should also be documented.

Source code for User Models shall be submitted in the FLECS language of the current PSS®E revision, C, or FORTRAN. User models created in MATLAB/SIMULINK are not permitted because users of the SDDB cannot run them without purchase of additional software.

7) Netting of small generating units, synchronous condensers, or other dynamic devices with bus load shall be permitted only when the unit or device nameplate rating is less than or equal to 20 MVA. (Note: any unit or device which is already netted with bus load in the MMWG cases need not be represented by a dynamic model.)

8) Lumping of similar or identical generating units at the same plant shall be permitted only when the nameplate ratings of the units being lumped are less than or equal to 50 MVA. A lumped unit shall not exceed 300 MVA. Such lumping shall be consistent from case to case within a model series.

9) Where per unit data is required by a dynamic model, all such data shall be provided in per unit on the generator or device nameplate MVA rating as given in the steady-state generator data record. This requirement also applies to excitation system and turbine-governor models, the per unit data of which shall be provided on the nameplate MVA of the associated generator. The maximum and minimum power of cross compound units should be provided on the nameplate MVA of one machine in accordance with PSS®E model IEEEG1 conventions.

10) Exceptions will be approved by MMWG on a case by case basis and the reason for each exception will be documented in the SDDB.

C. Dynamics Data Validation Requirements

1) All dynamics modeling data shall be screened according to the SDDB data screening checks. All data items not passing these screening tests shall be resolved with the generator or dynamic device owner and corrected.

2) All regional data submittals to the MMWG coordinator shall have previously undergone satisfactory initialization and 20-second no-disturbance simulation checks for each dynamics case to be developed. The procedures outlined in Section III.H* of this manual (*yet to be written) may be applied for this purpose.

D. Guidelines

1) Dynamics data submittals containing typical data should include documentation which identifies those models containing typical data. The CON conservation models, such as GENROA and GENSAA, which essentially copy dynamics data from one unit to another, may be useful for this purpose. When typical data is provided for existing devices, the additional documentation should give the equipment manufacturer, nameplate MVA and kV, and unit type (coal, nuclear, combustion turbine, hydro, etc.).

2) The voltage dependency of loads should be represented as a mixture of constant impedance, constant current, and constant power components (referred to as the ZIP model). The Regions should provide parameters for representing loads via the PTI PSS®E CONL activity. These parameters may be specified by area, zone, or bus. Other types of load modeling should be provided to MMWG when it becomes
evident that accurate representation of interregional dynamic performance requires it.
14. Procedures for Submission of Dynamics Data to the MMWG Coordinator

Regional Coordinators have two options, described below, for submitting dynamics data to the MMWG Coordinator.

A. Dynamics Data Updates Using Excel Template

Regional dynamics data updates are incremental to the dynamics data in the previous year release of SDDB. Regional Coordinators should therefore verify that bus names and unit IDs in SDDB are consistent with those in the MMWG steady-state to be made dynamics ready.

The table below describes the various types of updates and the required data and information that should be provided on the Excel template and in a separate DYRE file.

<table>
<thead>
<tr>
<th>Type of Update</th>
<th>Template Entries</th>
<th>Complete DYRE format record</th>
<th>Examples / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change one or more parameters of a dynamics model</td>
<td>Bus name, unit ID, model name, parameter name, new value</td>
<td>No</td>
<td>The voltage regulator gain is changed to the value determined by test.</td>
</tr>
<tr>
<td>Add a new model to an existing unit</td>
<td>No</td>
<td>Yes</td>
<td>A stabilizer is being added to a unit which did not have one.</td>
</tr>
<tr>
<td>Delete a model</td>
<td>Bus name, unit ID, model name</td>
<td>No</td>
<td>A stabilizer is removed.</td>
</tr>
<tr>
<td>Replace a model with another model of the same equipment group</td>
<td>Bus name, unit ID, model name for deleted model.</td>
<td>Yes for new model.</td>
<td>1. A DC exciter is replaced by a static exciter.</td>
</tr>
<tr>
<td>Change bus name and/or unit ID for all models of an existing unit</td>
<td>Old and new names; old and new unit IDs</td>
<td>No</td>
<td>2. A classical machine model is replaced by a detailed model.</td>
</tr>
<tr>
<td>Change bus number</td>
<td>No</td>
<td>No</td>
<td>Maintain the same name and unit ID and the model data will follow automatically.</td>
</tr>
<tr>
<td>Add dynamic models for a new generating unit</td>
<td>Bus name, unit ID, in service and out of service dates, MVA base, Zsource, RPM, unit type</td>
<td>Yes</td>
<td>Same requirements whether unit is at new or existing bus.</td>
</tr>
<tr>
<td>Remove a unit and all associated models</td>
<td>Bus name, unit ID</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

B. Complete Set of Dynamics Data

The regional dynamics data must be in the format of a PSS®E DYRE file. The data must be compatible and consistent with the MMWG steady-state selected for the dynamics cases that are being developed. One file for all cases is preferable.
15. MMWG Deliverables

A. Regional Coordinators
The Regional Coordinators will provide the following to the MMWG Coordinator(s).

1. Steady-State Cases
 A. Data as needed to create the MMWG steady-state cases in RAWD or Saved Case format, regional representation shall be within an entire solved MMWG steady-state model in the proper PSS®E revision format
 B. Tieline and interchange data in the specified format
 C. IDEV files for any data changes
 D. PSS®E formatted contingency file containing five N-1 contingencies valid for all cases in the model series.
 E. Data Dictionary containing fields for Bus Number, 18 character PSS®E Bus Name, EIA Plant Code (U.S. only) and Non-Abbreviated Bus Name.

2. Dynamics Cases
 A. Dynamics input data in DYRE format for new models
 B. SDDB Excel worksheet for changes to the database
 C. FLECS code and documentation for user defined models
 D. Load conversion CONL file sorted by area
 E. List of netted generation buses
 F. Two contingency events per region in IDEV format

B. MMWG Coordinator(s)
The MMWG Coordinator(s) will post the following to the ERAG Web Site.

1. Steady-State Cases
 Initialized steady state and regional contingency cases.
 A. Steady-State RAWD case file
 B. Conversion IDEV files

2. Dynamics Cases
 Dynamics case input data, output files and instructions including:
 A. Dynamics input data in DYRE format
 B. FLECS code for user defined models
 C. Load conversion CONL file sorted by area
 D. Any IPLAN or PYTHON programs necessary to set up the dynamics case

4. Final reports
16. Steady-State Modeling Guidelines

1. **Modeling Detail** – Each bus should be assigned the appropriate area, owner, and zone. All transmission lines 115 kV and above and all transformers with a secondary voltage of 115 kV and above should be modeled explicitly. Significant looped transmission less than 115 kV should also be modeled.

2. **Nominal Bus Voltage** – All bus voltages are expressed as a phase-to-phase voltage. All buses should have a non-zero nominal voltage. Nominal voltages of buses connected by lines, reactors, or series capacitors should be the same. The following nominal voltages are standard for AC transmission and sub-transmission in the United States and Canada and should generally be used: 765, 500, 345, 230, 161, 138, 115, 69, 46, 34.5 and 26.7 kV. In addition, significant networks exist in Canada having the following nominal voltages: 735, 315, 220, 120, 118.05, 110, 72, and 63.5 kV.

Nominal voltages of generator terminal and distribution buses less than 25 kV are at the discretion of the reporting entity. If transformers having more than two windings are modeled with one or more equivalent center point buses and multiple branches, rather than as a 3-winding transformer model, it is recommended that the nominal voltage of center point buses be designated as 999 kV. Because this voltage is above the standard range of nominal voltages, it can easily be excluded from the range of data to be printed in steady-state output.

3. **Islanded Buses** – Islanded buses shall not be modeled.

4. **Generator Modeling of Loads** – Fictitious generators should not be used to “load net” (by showing negative generation) a model of other nonnative load imbedded in steady-state areas. It is recommended that a separate zone be used to model such loads to allow exclusion from system load calculations.

5. **Zero Impedance Branches** – Bus ties that are opened to represent switching during contingencies may be modeled in detail. Zero impedance branches are permitted to model bus ties using $R=0.00000 + X=0.0001$ and $B=0.00000$. These values facilitate differentiating between bus ties and other low impedance lines, utilizing the zero impedance threshold THRSHZ in the PSS®E program. When connected between two voltage controlled (generator, switched shunt, or TCUL controlled), bus ties or other low impedance lines should be modeled using an impedance of $R=0.0001 + X=0.002$ and $B=0.00000$. This allows use of near-zero impedance attached to controlled buses that will be large enough to avoid significant solution problems.

6. **Impedance of Branches In Network Equivalents** – Where network representation has been equivalenced, a maximum cutoff impedance of 3.0 p.u. should be used.

7. **Negative Branch Reactances** – Except for series capacitors, negative branch reactances do not represent real devices. Their use in representing three winding transformers is obsolete. Negative branch reactances limit the selection of steady-state solution techniques and should be avoided.

8. **Transformers** – Effective with Revision 28 of PSS®E, off-nominal turns ratios may not be specified for branches; a block of four or five data records must be entered for each transformer. The off-nominal turns ratio in per unit, or the actual winding voltage in kilovolts, and the phase shift in degrees shall be specified for each winding. The measured impedance (resistive and inductive) between each pair of windings shall be specified: data entry options permit these to be entered in (1) per unit on system (100 MVA) base, (2) per
unit on winding MVA base, or (3) load loss in watts and impedance on winding MVA base and base voltage.

9. **Transformers Controlling Voltage or Reactive Power Flow** – The upper and lower limits of off-nominal turns ratio and the number of tap positions available are entered for winding 1 of transformers controlling voltage or reactive power flow. Default values of 1.1, 0.9 and 33 are representative of U.S. practice. The upper and lower voltage limits are entered for transformers controlling voltage and the difference, in per unit, should be at least twice the tap step size. The upper and lower MVAR limits are entered for transformers controlling reactive power flow and these limits should differ by at least 10 MVAR. Limits should accurately represent the actual operation of automatic control devices.

10. **Remote Regulation** – Regulation of a bus voltage more than one bus away (not counting hidden center point buses of three winding transformers) from the regulating device should be avoided. The sign of parameter CONT determines whether the off-nominal turns ratio is increased or decreased to increase voltage at the bus whose voltage is controlled by this transformer.

11. **Phase Shifting Transformers** (PSTs) – Manufacturer tested capability and operational limits must be provided to SPP in order to allow corrective actions to be developed by SPP planning staff for transmission planning purposes.

 PSTs will be represented in the planning models as Two-winding transformers with both windings at the same nominal voltage level. The active power flow into winding 1 is entered. The tolerance should be no less than 5 MW; i.e., a 10 MW dead band. The controlling band should be at least 10 degrees. The following characteristics should be considered by the entity submitting PST modeling data for the planning models:

 a) Real-time operational auto or manual adjustment operation of the PST.
 b) Real-time operational average MW flow for a particular season (e.g. average hourly MW flow is +18MW [directional based] during the Summer Peak Season, June 1 – September 30) in order to represent what is typically flowing through the PST during a particular season. This applies to PSTs that are not modeled for auto adjustment, in order to appropriately model the phase shift angle and relative MW flow, but should also consider the capability of the transformer regardless of the type of operation.
 c) Real-time operational MW flow limits (e.g. ±20 MW).
 d) Real-time operational phase shift angle range (e.g. -52.9° to 31.4°).
 e) The applicable planning model impedance table should reflect the impedance correction adjustments as the phase shift angle moves through the various angle steps.
 f) Applicable long-term firm transmission service levels for the PST.

12. **Branch and Transformer Ratings** – Normal is defined as continuous ratings for system intact conditions and emergency is defined as limited duration ratings used until the system is returned to normal. Accurate normal and emergency seasonal ratings of facilities are necessary to permit proper assessment of facility loading in regional and interregional studies. Three rating fields are provided for each branch and each transformer winding. Normal and emergency ratings should be entered in the first two fields (RATEA and RATEB, respectively); use of the third rating field (RATEC) is optional. Ratings should be omitted for model elements which are part of an electrical equivalent. The rating of a branch or transformer winding should not exceed the rating of the most limiting series element in the circuit, including terminal connections and associated equipment. The emergency rating should be greater than or equal to the normal rating.
13. **Generator Step-Up Transformers** (GSU) – When modeled implicitly, the GSU Resistance, reactance and tap setting (all in per unit values) shall be provided along with the Generator data. Whenever modeled explicitly, a GSU shall be modeled similar to a power transformer and the GSU nominal winding voltages, impedance(s), tap ratios, minimum and maximum tap position limits, number of tap positions, regulated bus (as applicable), normal and emergency ratings and in-service status data shall be provided. GSUs may be modeled explicitly as deemed necessary by either the transmission owner or the Regional Reliability Organization. Their modeling should be consistent with the associated dynamics modeling of the generator. Generator step-up transformers of cross-compound units should be modeled explicitly.

14. **Out-of-Service Generator Modeling** – Out-of-service generators should be modeled with a STATUS equal to zero.

15. **Generator MW Limits** – The generation capability limits specified for generators (PMIN and PMAX) should represent realistic seasonal unit output capability for the generator in that given base case. PMAX should always be greater than or equal to PMIN. Net maximum and minimum unit output capabilities should be used unless the generator terminal bus is explicitly modeled, the generator step up transformer is modeled as a branch, and unit load is modeled at the bus or buses from which it is supplied.

16. **Generator MVAR Limits** – The MVAR limits specified for generators (QMIN and QMAX) should represent realistic net unit output capability of the generator modeled. QMAX should always be greater than or equal to QMIN. Net maximum and minimum unit output capabilities should be given unless the generator terminal bus is explicitly modeled, the generator step up transformer is modeled as a branch, and unit load is modeled at the bus or buses from which it is supplied.

17. **Small Generators, Capacitors, and Static VAR Devices** – Small generators (e.g., 10 MVA), small capacitors, and small SVCs have limited reactive capability and cannot effectively regulate transmission bus voltage. Modeling them as regulating increases solution time. Consideration should be given to modeling them as non-regulating by specifying equal values for QMIN and QMAX. If several similar machines or devices are located at a bus and there is a need to regulate with these units, they should be lumped into an equivalent to speed solution.

18. **Coordination of Regulating Devices** – Multiple regulating devices (generators, switched shunt devices, tap changers, etc.) controlling the bus voltage at a single bus, or multiple buses connected by Zero Impedance Lines as described above, should have their scheduled voltage and voltage control ranges coordinated.

Also, regulated bus voltage schedules should be coordinated with the schedules of adjacent buses. Coordination is inadequate if solving the same model with and without enforcing machine regulating limits causes offsetting MVAR output changes greater than 500 MVAR at machines connected no more than two buses away.

19. **Over and Under Voltage Regulation** – Regulation of voltage schedules exceeding 1.10 per unit, or below 0.90 per unit should be avoided.

20. **Flowgates** – All transmission elements comprising part of one or more flowgates should be included in the data submitted by each region. A flowgate is a selected transmission element or group of elements acting as proxy for the transmission network representing potential thermal, voltage stability, rotor angle stability, and contractual system constraints to power transfer.
21. **Fixed Shunts** – All fixed shunt elements at buses modeled in the steady-state should be modeled explicitly (not as loads or included with load). The status should be set to zero if the shunt is not in service. Fixed shunt elements that are directly connected to a bus should be represented as bus shunts. Fixed shunt elements that are directly connected to and switch with a branch should be represented as line shunts.

22. **Switched Shunts** – Switched shunt elements at buses modeled in the steady-state should be modeled explicitly. Continuous mode modeling using a switched shunt should not be used unless it represents actual equipment (e.g. SVC or induction regulator). The number and size of switched admittance blocks should represent field conditions. The bandwidth (difference between VSWHI and VSWLO) of switched shunt devices should be wide enough that switching one block of admittance does not move the voltage at the bus completely through the bandwidth, thus causing solution problems at the bus. It is recommended that the minimum voltage bandwidth be 4% if only switched shunts are used to regulate voltage. Switched shunts should not regulate voltage at a generator bus, nor should they be connected to the network with a zero impedance tie.

23. **Static Var Systems** – Static var elements should be modeled with accurate reactive power (leading/lagging) limits. An accurate voltage set point and equipment status, as well as any associated fixed/switched shunt equipment should also be modeled based on actual seasonal operation.

24. **HVDC** – All HVDC transmission facilities must be represented with a sufficiently detailed model to simulate its expected behavior.

25. **Interchange Tolerances** – In a solved case, the actual interchange for any area containing a Type 3 (swing) bus should be within 25 MW of the specified desired interchange value. (Note that PSS®E does not enforce the interchange deviation for areas containing Type 3 buses.)

26. **Scheduled Interchange vs. Scheduled Tie Line Flows** – Scheduled interchange between areas directly connected solely by ties with flows controlled to a specific schedule (PAR-controlled AC or DC) should be consistent with the PAR or DC scheduled flows.

17. **Causes of Non-convergence and Problems in Merged Base Case Models**

A. **Causes of Non-convergence**
 1. A line whose impedance is very small as compared to that of a line connected in series with it.
 (Solution: If possible, add impedance of short and long series-connected lines and represent as one line.)
 2. Tie lines are missing because they were not picked up by model creation or tie lines are connected incorrectly.
 3. An impedance or susceptance value whose magnitude is extremely large. A decimal point may have been misplaced, or large cutoff impedance was specified during equivalencing.
 4. A system's regulating (slack) bus is in a different system. This is probably due to an incorrect data entry in changing a model.
 5. An isolated system (island) has been inadvertently created. Voltage phase divergence will be flagged immediately and the program will stop calculating after the first iteration.
 6. Unrealistic tap changing transformer tap limits.
 7. Radial system is very large.
 8. Poor voltage regulation such as:
a. Unequal voltage schedules at generating units connected by a low impedance line.
b. Regulation of a radial line at both ends at unequal voltages.
 (Solution: Do not regulate a radial bus; hold MVAR output of a radial bus
 constant at the value obtained in last iteration.)
c. Conflicting voltage regulation.
d. Unreasonably small voltage range for switched shunts.
e. Remote regulation of more than one bus away.

10. Not solvable from flat start.
11. Fictitious regulation of buses.
12. Extremely low voltage schedules.
13. Not following the approved MMWG sign convention for phase shifters (see page 3 of this Appendix) or not adhering to minimum MW tolerance for phase-shifting-under load transformers.
14. Zero or very low reactance branches. Minimum reactance = 0.0001 per unit.
15. Inconsistent representation of delta-wye transformers, typically by two companies interconnected at both voltage levels.
B. Problems

1. Duplicate bus names in an area(s).
2. The data will not permit steady-state calculations, such as:
 a. Zero voltage regulation, resulting in division by zero. Notify Regional Coordinator.
 b. Interchange does not net to zero. Save the data but do not calculate until the Coordinator has given instructions for correcting the data.
 c. High R/X ratios in equivalent area causing non-convergence. Delete line or reduce ratio.
3. Missing tie lines. These tie lines may or may not be in the base case model. The program flags the tie lines as missing because of its tie line checking routine. A review of the data dump will verify the inclusion of a tie line if it is included and has been flagged as missing. Likewise, the validity of the error message will be verified by a review of the data dump.
4. Phase Shifting Transformers
 a. The first-named bus in the branch data is taken as the “From” bus and the second-named bus is taken as the “To” bus. The “From” bus is also taken as the tapped bus.
 b. If phase shift angle is specified in CDF as positive, $\theta_A < \theta_B$.
 c. Assuming θ_A and θ_B stay relatively constant for small changes, an increase in this positive phase shift angle will tend to change the voltage phase angle of Bus A in a lagging direction relative to that for Bus B. This causes an incremental increase in real power flow in the direction of B to C regardless of the direction of the initial real power flowing through the transformer.
 d. A desired positive real power flow into the phase shifting transformer at the “From” bus or tapped bus is specified with positive real power limits.
 e. The “Controlled Bus” specified should be the same as the tapped bus to be consistent and avoid confusion.

Note: The PTI PSS®E steady-state program currently being used by AEP to process MMWG models requires the above convention. Therefore, it is desirable that all phase shifter models sent to AEP conform to this convention. If the data submitted does not conform to the above convention, AEP must be notified so that appropriate corrections can be made.
18. Procedures for Initialization and No-Disturbance Checks Of Library DYNAMICS Cases

Note: PSS®E activities relevant to the following steps are shown in brackets.

1. Create a converged load flow case with as few limit violations and questionable data items as possible.
 A. Solve the case after each set of major changes [FNSL, FDNS, SOLV, or MSLV] and save it to minimize rework if a change has unintended consequences. If all of the following constraints are satisfied, convergence within tolerance, even from a flat start, should not take more than the default number of iterations. However, there is usually no reason to use a flat start if the case being updated was solved.
 B. Generator checks using a list of all data to spot unrealistic, typically default, generator data values. [LIST, option 5] There is no checking activity listing only machines having suspect values of the following
 i. Machine MVA on the default base of 100. Although models will work if all load flow and dynamic model parameters are entered on this basis, limit checks will not work correctly.
 ii. Source impedance of 1.0 p.u. on machine MVA base. This value is substantially higher than normal for synchronous machines.
 iii. Source impedances equal to or less than zero. These will cause generator conversion to fail.
 iv. Real and/or reactive power limits of +9999 or −9999.
 C. Checks which report abnormal values
 i. Branch flows exceeding normal ratings. [RATE or OLTIL and OLTR]
 ii. Bus voltages below 0.95 p.u. except in the case of generator terminal voltage buses connected to the transmission bus by a step-up transformer with a tap ratio significantly off nominal. [VCHK]
 iii. Overloaded generators. [GEOL]. Note that this activity checks machine output against the machine MVA base, MBASE, not against PMAX, PMIN, QMAX, and QMIN.
 iv. Branches with extreme impedances or tap ratios [BRCH]. Suggested options are:
 1. Small impedance. Note that very small impedances can be treated as zero impedance ties by selection of parameter THRSHZ and these will not be a problem.
 2. Negative reactance. These are typically found in Y representations of three winding transformers. Solution activity SOLV may not be used on cases containing such branches and MSLV may not be used if they are present at a Type 2 or 3 (generator) bus.
 3. Charging. Values exceeding the default upper check limit (5.0 p.u.) are normal on long EHV lines but others should be checked. Negative values are occasionally used for magnetizing impedance on transformers but this usage is not recognized in the PSS®E Program Operation Manual.
 4. Parallel transformers. Minor tap ratio differences may simply reflect field conditions, but differences exceeding one step should be checked to guard against inadvertent errors.
 5. High tap ratios.
 D. Interactive checks: the user is asked to enter new value(s) for each exception, or hit “carriage return” for no change.
 i. Generators dispatched outside their real power limits [SCAL]. Scaling areas or zones should be used cautiously if generators having default PMAX (+9999) and PMIN (-9999) limits are present.
 ii. Inconsistent targets at a bus whose voltage is controlled by two or more system elements: local generation, switched shunts, and voltage controlling transformers. [CNTB]. There is a tendency not to recognize different summer and winter operating strategies where appropriate.
 iii. Questionable voltage or flow controlling transformer parameters. [TPCH]
 iv. Buses in “islands” not containing a system swing bus. [TREE]. Note that there can be multiple islands each of which does contain a system swing bus, with DC links connecting them.
2. To confine the initialization to a subset of the original load flow, for instance the areas comprising one region, proceed as follows.
 A. Create a raw data file containing only the area(s) of interest. [RAWD, AREA]
 B. Read in the raw data file just created. [READ]
 C. If no system swing bus is in the area kept, change the type of a generator bus from 2 to 3 to make it the system swing bus. [CHNG]
 D. Locate any islands created by the subsetting operation and either connect or drop them. [TREE].
 E. Replace flows on tie lines severed by the subsetting operation with equivalent loads (positive for flows out, negative for flows in). [BGEN]

3. Net generation with load at any buses where a generator(s) exists for which no dynamic models are available. [GNET].

4. Convert the generators in the load flow [CONG], solve, [ORDR, FACT, TYSL] and save converted case.[SAVE]

5. From the dynamics entry point, read in the dynamic model data file [DYRE] (Load flow case must also be in memory.)
 A. Specify CONEC, CONET, and COMPILE files.
 B. It is highly desirable to include a SYSANG model in the DYRE file, although this makes it mandatory to recompile even if no user models are included. This model provides six monitoring output channels, which can be used to scan a no-disturbance simulation for stability without attempting to select individual machines to monitor.

6. Concatenate FLECS code for user models onto CONEC or CONET files.

7. Compile.

9. Restart from the dynamics entry point, this time using “user dynamics”.
 A. Read converted load flow [CASE].
 B. Read in the dynamic data file [DYRE]
 C. Specify channels to record appropriate states and variables as simulation outputs [CHAN]. Include SYSANG variables if this model was included in the dynamics data file as suggested above.
 D. Check consistency of dynamic models [DYCH, option 1].
 E. Initialize dynamic simulation [STRT]. The output of this activity may have several important parts and it is desirable to keep a log file for reference while debugging.
 i. Warning messages for
 1. Generators in the load flow for which there is no active machine model.
 2. Models, usually of excitation systems or governors, initialized out of limits.
 3. The number of iterations required to initialize the initial-conditions steady-state.
 ii. A tabulation of conditions at each online machine
 1. Terminal voltage
 2. Exciter output voltage
 3. Real and reactive power output
 4. Power factor
 5. Machine angle in degrees
 6. Direct and quadrature axis currents on machine base.
 iii. A diagnosis of initial conditions, either
 1. “Initial conditions check OK”, or
 2. A listing of suspect initial conditions generally states whose time derivative is not “small” (relative to the value of the state). These may be caused by inconsistencies between the real and reactive power scheduled for a unit by the load flow (including automatic changes in reactive power to hold bus voltage at a target level) or by parameter errors.
 iv. For models flagged in steps i) through iii), consider using activity [DOCU] to identify parameters which may be causing problems. This activity will also give the automatically calculated values of exciter model parameters, which are derived if the corresponding parameters, as read in, are 0. Other warnings may indicate errors in the steady-state model.
 F. Modify model parameters or the load flow as appropriate and repeat steps up to this point until there are no warning messages nor suspect initial conditions.
10. Record a snapshot [SNAP] of dynamic state values prior to application of any disturbance or simulation of any time period.

11. Simulate undisturbed operation [RUN] for at least 20 seconds. Printing the convergence monitor [RUN,CM] can indicate where problems are, but considerably increases the amount of output.

12. Stop simulation. Review output values in tabular and/or graphical form.

13. Validate exciter model response to a step change in set point. [ESTR] and [ERUN]. Field voltage and terminal voltage will be output for each exciter model and may be reviewed in tabular or graphical form. Satisfactory response is indicated if the terminal voltage settles to the specified value within a few seconds, if the field voltage is reasonable, and the response is free of

A. Excessive overshoot
B. Sustained oscillations
C. High frequency noise (may be caused by using too long a simulation time step.)
D. Unexpected discontinuities in the output variables or their derivatives (except IEEE Type 4 “non-continuous” regulator models).

14. Validate governor model response to a step change. [GSTR] and [GRUN]. Mechanical power and speed deviation will be output for each shaft where a governor model is present and may be reviewed in tabular or graphical form. Models of cross-compound unit governors specify two machines so four output variables are used. Steam or combustion turbine unit governors may require up to 20 seconds to attain equilibrium, and hydro units even longer, even if they are well tuned. Satisfactory response is indicated if speed deviation settles to approximately \((- K) = (-1 / R)\), mechanical power to \((1-1/K)\) times the specified value, and the response variables are free of excessive overshoot or sustained oscillations.

19. Compliance

A. MDWG Model Development Procedure Manual
Note: The latest document can be found on SPP.org

B. MDWG Power flow, Short Circuit, and Dynamic model schedule and list
Note: The latest document can be found on SPP.org

C. Data Submittal Forms (This is a separate document)
Note: The latest document is posted with every model set

D. MDWG Procedure for late or no data submittal (FUTURE)
APPENDIX I
Master TIE Line File DATA Fields

Branch Data Fields

In Service Date,
Out Service Date,
From Region Name,
From Area#,
From Area Name,
From Bus#,
From Bus Name,
From Bus kV,
To Region Name,
To Area#,
To Area Name,
To Bus#,
To Bus Name,
To Bus kV,
Metered End (F,T),
CKT,
R,
X,
B,
Summer Rating A,
Summer Rating B,
Summer Rating C,
Winter Rating A,
Winter Rating B,
Winter Rating C,
GI (pu),
BI (pu),
GJ (pu),
BJ (pu),
STATUS (0,1),
LEN (mi),
Owner 1,
Fraction 1,
Owner 2,
Fraction 2,
Owner 3,
Fraction 3,
Owner 4,
Fraction 4
MASTER TIE LINE FILE DATA FIELDS
continued

Two Winding Transformer Data Fields

In Service Date,
Out Service Date,
From Bus Region Name,
From Bus Area#,
From Bus Area Name,
From Bus Number,
From Bus Name,
From Bus kV,
To Bus Region Name,
To Bus Area#,
To Bus Area Name,
To Bus Number,
To Bus Name,
To Bus kV,
Tapped Side,
CKT,
CW,
CZ,
CM,
MAG1,
MAG2,
Metered Side,
NAME,
STATUS (0,1),
Owner 1,
Fraction 1,
Owner 2,
Fraction 2,
Owner 3,
Fraction 3,
Owner 4,
Fraction 4,
R1-2,
X1-2,
SBase1-2,
WindV1,
NomV1,
Ang1,
Summer Rating A1,
Summer Rating B1,
Summer Rating C1,
Winter Rating A1,
Winter Rating B1,
Winter Rating C1,
MASTER TIE LINE FILE DATA FIELDS
continued

Two Winding Transformer Data Fields - continued
COD1,
Volt Control Bus Region Name,
Volt Control Bus Area Number,
Volt Control Bus Area Name,
Volt Control Bus Number (CONT1),
Volt Control Bus Name,
Volt Control Bus kV,
RMA1,
RMI1,
VMA1,
VMII,
NTP1,
TAB1,
CR1,
CX1,
WindV2,
NomV2
MASTER TIE LINE FILE DATA FIELDS
continued

Three Winding Transformer Data Fields

In Service Date,
Out Service Date,
Winding 1 Region Name,
Winding 1 Area#,
Winding 1 Area Name,
Winding 1 Bus#,
Winding 1 Bus Name,
Winding 1 Bus kV,
Winding 2 Region Name,
Winding 2 Area#,
Winding 2 Area Name,
Winding 2 Bus#,
Winding 2 Bus Name,
Winding 2 Bus kV,
Winding 3 Region Name,
Winding 3 Area#,
Winding 3 Area Name,
Winding 3 Bus#,
Winding 3 Bus Name,
Winding 3 Bus kV,
CKT,
CW,
CZ,
CM,
MAG1,
MAG2,
NMETR(1,2,3),
NAME,
STATUS(0,1),
Owner 1,
Fraction 1,
Owner 2,
Fraction 2,
Owner 3,
Fraction 3,
Owner 4,
Fraction 4,
R1-2,
X1-2,
SBase1-2,
R2-3,
X2-3,
SBase2-3,
R3-1,
MASTER TIE LINE FILE DATA FIELDS
continued

Three Winding Transformer Data Fields - continued

X3-1,
SBASE3-1,
VMSTAR,
ANSTAR,
WindV1,
NomV1,
Ang1,
Summer Rating A1,
Summer Rating B1,
Summer Rating C1,
Winter Rating A1,
Winter Rating B1,
Winter Rating C1,
COD1,
Control Bus 1 Region,
Control Bus 1 Area Number,
Control Bus 1 Area Name,
Control Bus #1(CONT1),
Control Bus Name,
Control Bus KV,
RMA1,
RMI1,
VMA1,
VMI1,
NTP1,
TAB1,
CR1,
CX1,
WindV2,
NomV2,
Ang2,
Summer Rating A2,
Summer Rating B2,
Summer Rating C2,
Winter Rating A2,
Winter Rating B2,
Winter Rating C2,
COD2,
Control Bus 2 Region,
Control Bus 2 Area Number,
Control Bus 2 Area Name,
CONT2,
Control Bus 2 Name,
Control Bus 2 KV,
RMA2,
MASTER TIE LINE FILE DATA FIELDS
continued

Three Winding Transformer Data Fields - continued

RM12,
VMA2,
VM12,
NTP2,
TAB2,
CR2,
CX2,
WindV3,
NomV3,
Ang3,
Summer Rating A3,
Summer Rating B3,
Summer Rating C3,
Winter Rating A3,
Winter Rating B3,
Winter Rating C3,
COD3,
Control Bus 3 Region,
Control Bus 3 Area Number,
Control Bus 3 Area Name,
CONT3,
Control Bus 3 Name,
Control Bus 3 KV,
RMA3,
RM13,
VMA3,
VM13,
NTP3,
TAB3,
CR3,
CX3
Two Terminal DC Tie Data Fields

In Service Date,
Out Service Date,
I,
MDC,
RDC,
SETVL,
VSCHD,
VCMOD (1.0),
RCOMP,
DELTI,
METER (R,I),
DCVMIN,
CCCTMX,
CCCACC,
IPR REGION NAME,
IPR AREA#,
IPR AREA NAME,
IPR Bus#,
IPR BUS NAME,
IPR BUS kV,
NBR,
ALFMX,
ALFMN,
RCR,
XCR,
EBASR,
TRR,
TAPR,
TMXR,
TMNR,
STPR,
ICR REGION NAME,
ICR AREA#,
ICR AREA NAME,
ICR BUS#,
ICR BUS NAME,
ICR BUS kV,
IFR REGION NAME,
IFR AREA#,
IFR AREA NAME,
IFR BUS#,
IFR BUS NAME,
IFR BUS kV,
ITR REGION NAME,
ITR AREA#,
MASTER TIE LINE FILE DATA FIELDS
(continued)

Two Terminal DC Tie Data Fields
ITF AREA NAME,
ITR BUS#,
ITR BUS NAME,
ITR BUS KV,
IDR,
XCAPR,
IPI REGION NAME,
IPI AREA#,
IPI AREA NAME,
IPI Bus#,
IPI BUS NAME,
IPI BUS Kv,
NBI,
GAMMX,
GAMMN,
RCI,
XCI,
EBASI,
TRI,
TAPI,
TMXI,
TMNI,
STPI,
ICI REGION NAME,
ICI AREA#,
ICI AREA NAME,
ICI BUS#,
ICI BUS NAME,
ICI BUS kv,
IFI REGION NAME,
IFI AREA#,
IFI AREA NAME,
IFI Bus#,
IFI BUS NAME,
IFI BUS Kv,
ITI REGION NAME,
ITI AREA#,
ITI AREA NAME,
ITI BUS#,
ITI BUS NAME,
ITI BUS Kv,
IDI,
XCAPI

Notes:
(1) The data formats must be compatible with PSS®E input requirements.
(2) The in-service and out-of-service dates will be expressed as mm/dd/yyyy.
Appendix II

Number Range Assignments for ERAG MMWG Steady-State Data

<table>
<thead>
<tr>
<th>Region</th>
<th>Bus Numbers</th>
<th>Area Numbers</th>
<th>Zone Numbers</th>
<th>Owner Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire System</td>
<td>100,000 – 899,999</td>
<td>100 to 899</td>
<td>100 to 1,899</td>
<td>100 to 1,199</td>
</tr>
<tr>
<td>NPCC</td>
<td>100,000 to 199,999</td>
<td>100 to 199</td>
<td>100 to 199 and 1,100 to 1,199</td>
<td>100 to 199</td>
</tr>
<tr>
<td>RFC</td>
<td>200,000 to 299,999</td>
<td>200 to 299</td>
<td>200 to 299 and 1,200 to 1,299 and 1,800 to 1,899</td>
<td>200 to 299</td>
</tr>
<tr>
<td>SERC</td>
<td>300,000 to 399,999</td>
<td>300 to 399</td>
<td>300 to 399 and 1,300 to 1,399</td>
<td>300 to 399</td>
</tr>
<tr>
<td>FRCC</td>
<td>400,000 – 499,999</td>
<td>400 to 499</td>
<td>400 to 499 and 1,400 to 1,499</td>
<td>400 to 499</td>
</tr>
<tr>
<td>SPP</td>
<td>50,000 to 599,999</td>
<td>500 to 599</td>
<td>500 to 599 and 1,500 to 1,599</td>
<td>500 to 599 and 800 to 899</td>
</tr>
<tr>
<td>MRO</td>
<td>600,000 to 699,999</td>
<td>600 to 699</td>
<td>600 to 699 and 1,600 to 1,699</td>
<td>600 to 699</td>
</tr>
<tr>
<td>ERCOT (future)</td>
<td>700,000 to 799,999</td>
<td>700 to 799</td>
<td>700 to 799 and 1,700 to 1,799</td>
<td>700 to 799</td>
</tr>
</tbody>
</table>

1 Area or zone number 1 is sometimes used as a default when the number is omitted by mistake. Its use to number an actual area should be avoided.
Appendix III
Utilized Impedance Correction Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Tap or Angle 1</th>
<th>Factor 1</th>
<th>Tap or Angle 2</th>
<th>Factor 2</th>
<th>Tap or Angle 3</th>
<th>Factor 3</th>
<th>Tap or Angle 4</th>
<th>Factor 4</th>
<th>Tap or Angle 5</th>
<th>Factor 5</th>
<th>Tap or Angle 6</th>
<th>Factor 6</th>
<th>Tap or Angle 7</th>
<th>Factor 7</th>
<th>Tap or Angle 8</th>
<th>Factor 8</th>
<th>Tap or Angle 9</th>
<th>Factor 9</th>
<th>Tap or Angle 10</th>
<th>Factor 10</th>
<th>Tap or Angle 11</th>
<th>Factor 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-60</td>
<td>1</td>
<td>-36</td>
<td>0.358</td>
<td>-24.4</td>
<td>0.192</td>
<td>-12.4</td>
<td>0.054</td>
<td>-8.3</td>
<td>0.024</td>
<td>8.3</td>
<td>0.024</td>
<td>12.4</td>
<td>0.054</td>
<td>24.4</td>
<td>0.192</td>
<td>36</td>
<td>0.358</td>
<td>60</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-70</td>
<td>1</td>
<td>-43</td>
<td>0.78</td>
<td>-32</td>
<td>0.85</td>
<td>0</td>
<td>0.5</td>
<td>32</td>
<td>0.85</td>
<td>43</td>
<td>0.78</td>
<td>70</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-180</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>180</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-152</td>
<td>1</td>
<td>-121.5</td>
<td>0.625</td>
<td>-85.4</td>
<td>0.372</td>
<td>-42.2</td>
<td>0.217</td>
<td>0</td>
<td>0.157</td>
<td>-42.2</td>
<td>0.217</td>
<td>85.4</td>
<td>0.372</td>
<td>121.5</td>
<td>0.625</td>
<td>152</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-40</td>
<td>1.848</td>
<td>-30</td>
<td>1.408</td>
<td>0</td>
<td>1</td>
<td>30</td>
<td>1.538</td>
<td>40</td>
<td>1.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-25</td>
<td>1.995</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>1.995</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-25</td>
<td>1.995</td>
<td>0</td>
<td>1</td>
<td>25</td>
<td>1.995</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-40</td>
<td>1.66</td>
<td>-29.5</td>
<td>1.331</td>
<td>-25.1</td>
<td>1.228</td>
<td>-20.6</td>
<td>1.145</td>
<td>20.6</td>
<td>1.145</td>
<td>25.1</td>
<td>1.228</td>
<td>29.5</td>
<td>1.331</td>
<td>40.1</td>
<td>1.66</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-40</td>
<td>1.849</td>
<td>-30</td>
<td>1.402</td>
<td>-20</td>
<td>1.196</td>
<td>-10</td>
<td>1.045</td>
<td>10</td>
<td>1.045</td>
<td>20</td>
<td>1.161</td>
<td>30</td>
<td>1.366</td>
<td>40</td>
<td>1.741</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-30</td>
<td>1.913</td>
<td>0</td>
<td>1</td>
<td>30</td>
<td>1.913</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-47</td>
<td>6.34</td>
<td>-41.7</td>
<td>5.44</td>
<td>-33.3</td>
<td>4</td>
<td>-27.5</td>
<td>3.06</td>
<td>-18.5</td>
<td>2</td>
<td>1</td>
<td>18.5</td>
<td>1.76</td>
<td>3.278</td>
<td>33.3</td>
<td>3.643</td>
<td>41.7</td>
<td>5.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-40</td>
<td>2.311</td>
<td>0</td>
<td>1</td>
<td>40</td>
<td>2.311</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>-40</td>
<td>7.15</td>
<td>-30</td>
<td>4.85</td>
<td>-20</td>
<td>2.9</td>
<td>-10</td>
<td>1.6</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>1.6</td>
<td>20</td>
<td>2.9</td>
<td>30</td>
<td>4.85</td>
<td>40</td>
<td>7.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.917</td>
<td>1.641</td>
<td>0</td>
<td>1</td>
<td>1.03</td>
<td>1.02</td>
<td>1.1</td>
<td>1.427</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.889</td>
<td>0.575</td>
<td>1.04</td>
<td>1</td>
<td>1.2</td>
<td>2.89</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.8</td>
<td>1.563</td>
<td>0.85</td>
<td>1.384</td>
<td>0.9</td>
<td>1.235</td>
<td>0.95</td>
<td>1.108</td>
<td>1.1</td>
<td>0.907</td>
<td>1.1</td>
<td>0.826</td>
<td>1.15</td>
<td>0.756</td>
<td>1.2</td>
<td>0.694</td>
<td>1.25</td>
<td>0.64</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-10</td>
<td>1</td>
<td>5</td>
<td>0.655</td>
<td>20</td>
<td>1.449</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-40</td>
<td>9.2</td>
<td>-46.38</td>
<td>4.69</td>
<td>-32.3</td>
<td>1.87</td>
<td>-20</td>
<td>1</td>
<td>18</td>
<td>32.3</td>
<td>3</td>
<td>46.38</td>
<td>5.54</td>
<td>60</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-15</td>
<td>2.076</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>2.076</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-15</td>
<td>1.62</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>1.62</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>-5.7</td>
<td>2.061</td>
<td>0</td>
<td>1</td>
<td>5.7</td>
<td>2.061</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>-10</td>
<td>1.782</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>1.782</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-30</td>
<td>1.65</td>
<td>0</td>
<td>1</td>
<td>30</td>
<td>1.65</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>-15</td>
<td>2.076</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>2.076</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-40</td>
<td>1</td>
<td>-33</td>
<td>0.75</td>
<td>-25</td>
<td>0.6</td>
<td>-12.5</td>
<td>0.55</td>
<td>-7.5</td>
<td>0.52</td>
<td>7.5</td>
<td>0.52</td>
<td>12.5</td>
<td>0.65</td>
<td>25</td>
<td>0.6</td>
<td>35</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>-42.5</td>
<td>1.784</td>
<td>-32.6</td>
<td>1.497</td>
<td>-22</td>
<td>1.26</td>
<td>-11.1</td>
<td>1.05</td>
<td>0</td>
<td>1</td>
<td>11.1</td>
<td>1.05</td>
<td>22</td>
<td>1.193</td>
<td>32.6</td>
<td>1.443</td>
<td>42.5</td>
<td>1.782</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>-52.9</td>
<td>1.9025</td>
<td>-43.6</td>
<td>1.6768</td>
<td>-33.7</td>
<td>1.4512</td>
<td>-23.2</td>
<td>1.2258</td>
<td>-12.3</td>
<td>1</td>
<td>-1.2</td>
<td>1.1383</td>
<td>9.9</td>
<td>1.2706</td>
<td>20.9</td>
<td>1.4154</td>
<td>31.4</td>
<td>1.5539</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

23
Appendix IV

Utilized DC Lines

<table>
<thead>
<tr>
<th>DC Line Number</th>
<th>Region</th>
<th>Name</th>
<th>DC Line Number</th>
<th>Region</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MRO</td>
<td></td>
<td>26</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MRO</td>
<td></td>
<td>27</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MRO</td>
<td></td>
<td>28</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MRO</td>
<td></td>
<td>29</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MRO</td>
<td></td>
<td>30</td>
<td>RFC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MRO</td>
<td></td>
<td>31</td>
<td>RFC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MRO</td>
<td></td>
<td>32</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MRO</td>
<td></td>
<td>33</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MRO</td>
<td></td>
<td>34</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MRO</td>
<td></td>
<td>35</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NPCC</td>
<td></td>
<td>36</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NPCC</td>
<td></td>
<td>37</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NPCC</td>
<td></td>
<td>38</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>NPCC</td>
<td></td>
<td>39</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NPCC</td>
<td></td>
<td>40</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NPCC</td>
<td></td>
<td>41</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NPCC</td>
<td></td>
<td>42</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NPCC</td>
<td></td>
<td>43</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>NPCC</td>
<td></td>
<td>44</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>NPCC</td>
<td></td>
<td>45</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NPCC</td>
<td></td>
<td>46</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>NPCC</td>
<td></td>
<td>47</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NPCC</td>
<td></td>
<td>48</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NPCC</td>
<td></td>
<td>49</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>NPCC</td>
<td></td>
<td>50</td>
<td>Unused</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX V
System Codes for Use in ERAG MMWG Steady-State Data

NPCC – Northeast Power Coordination Council

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>ISO-NE</td>
<td>ISO New England</td>
</tr>
<tr>
<td>102</td>
<td>NYISO</td>
<td>New York ISO</td>
</tr>
<tr>
<td>103</td>
<td>IESO</td>
<td>Independent Electric System Operator</td>
</tr>
<tr>
<td>104</td>
<td>TE</td>
<td>TransEnergie</td>
</tr>
<tr>
<td>105</td>
<td>NB</td>
<td>New Brunswick Power</td>
</tr>
<tr>
<td>106</td>
<td>NS</td>
<td>Nova Scotia Power</td>
</tr>
<tr>
<td>107</td>
<td>CORNWALL</td>
<td>Cornwall</td>
</tr>
</tbody>
</table>

RFC – Reliability First Corporation

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>AP</td>
<td>Allegheny Power</td>
</tr>
<tr>
<td>202</td>
<td>FE</td>
<td>FirstEnergy</td>
</tr>
<tr>
<td>205</td>
<td>AEP</td>
<td>American Electric Power</td>
</tr>
<tr>
<td>206</td>
<td>OVEC</td>
<td>Ohio Valley Electric Corporation</td>
</tr>
<tr>
<td>207</td>
<td>HE</td>
<td>Hoosier Energy Rural Electric Cooperative, Inc.</td>
</tr>
<tr>
<td>208</td>
<td>DEM</td>
<td>Duke Energy Midwest</td>
</tr>
<tr>
<td>209</td>
<td>DAY</td>
<td>Dayton Power & Light Company</td>
</tr>
<tr>
<td>210</td>
<td>SIGE</td>
<td>Southern Indiana Gas & Electric Company</td>
</tr>
<tr>
<td>215</td>
<td>DLCO</td>
<td>Duquesne Light Company</td>
</tr>
<tr>
<td>216</td>
<td>IPL</td>
<td>Indianapolis Power & Light Company</td>
</tr>
<tr>
<td>217</td>
<td>NIPS</td>
<td>Northern Indiana Public Service Company</td>
</tr>
<tr>
<td>218</td>
<td>METC</td>
<td>Michigan Electric Transmission Co., LLC</td>
</tr>
<tr>
<td>219</td>
<td>ITCT</td>
<td>International Transmission Company</td>
</tr>
<tr>
<td>220</td>
<td>IPRV</td>
<td>Illinois Power- Riverside Plant</td>
</tr>
<tr>
<td>222</td>
<td>CE</td>
<td>Commonwealth Edison</td>
</tr>
<tr>
<td>225</td>
<td>PJM</td>
<td>PJM 500 kV System</td>
</tr>
<tr>
<td>226</td>
<td>PENNELEC</td>
<td>Pennsylvania Electric Company</td>
</tr>
<tr>
<td>227</td>
<td>METED</td>
<td>Metropolitan Edison Company</td>
</tr>
<tr>
<td>228</td>
<td>JCP&L</td>
<td>Jersey Central Power & Light Company</td>
</tr>
<tr>
<td>229</td>
<td>PPL</td>
<td>PPL Electric Utilities</td>
</tr>
<tr>
<td>230</td>
<td>PECO</td>
<td>PECO Energy Company</td>
</tr>
<tr>
<td>231</td>
<td>PSE&G</td>
<td>Public Service Electric & Gas Company</td>
</tr>
<tr>
<td>232</td>
<td>BG&E</td>
<td>Baltimore Gas & Electric Company</td>
</tr>
<tr>
<td>233</td>
<td>PEPCO</td>
<td>Potomac Electric Power Company</td>
</tr>
<tr>
<td>234</td>
<td>AE</td>
<td>Atlantic Electric</td>
</tr>
<tr>
<td>235</td>
<td>DP&L</td>
<td>Delmarva Power & Light Company</td>
</tr>
<tr>
<td>236</td>
<td>UGI</td>
<td>UGE Utilities, Inc.</td>
</tr>
<tr>
<td>237</td>
<td>RECO</td>
<td>Rockland Electric Company</td>
</tr>
<tr>
<td>295</td>
<td>WEC</td>
<td>Wisconsin Electric Power Company (ATC)</td>
</tr>
<tr>
<td></td>
<td>ESE</td>
<td>Edison Sault Electric (American Transmission Company - ATC)</td>
</tr>
</tbody>
</table>
SERC – SERC Reliability Corporation

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>314</td>
<td>BREC</td>
<td>Big Rivers Electric Corporation</td>
</tr>
<tr>
<td>320</td>
<td>EKPC</td>
<td>East Kentucky Power Cooperative</td>
</tr>
<tr>
<td>330</td>
<td>AECI</td>
<td>Associated Electric Cooperative Inc.</td>
</tr>
<tr>
<td>331</td>
<td>BCA</td>
<td>Batesville</td>
</tr>
<tr>
<td>332</td>
<td>LAGN</td>
<td>Louisiana Generating Company</td>
</tr>
<tr>
<td>333</td>
<td>CWLD</td>
<td>Columbia, MO Water and Light</td>
</tr>
<tr>
<td>334</td>
<td>WESTMEMP</td>
<td>West Memphis</td>
</tr>
<tr>
<td>335</td>
<td>CONWAY</td>
<td>Conway</td>
</tr>
<tr>
<td>336</td>
<td>BUBA</td>
<td>Benton Utilities Balancing Authority</td>
</tr>
<tr>
<td>337</td>
<td>PUPP</td>
<td>Panda Union Power Partners</td>
</tr>
<tr>
<td>338</td>
<td>DERS</td>
<td>City of Ruston</td>
</tr>
<tr>
<td>339</td>
<td>DENL</td>
<td>City of North Little Rock</td>
</tr>
<tr>
<td>340</td>
<td>CPLE</td>
<td>Carolina Power & Light Company – East</td>
</tr>
<tr>
<td>341</td>
<td>CPLW</td>
<td>Carolina Power & Light Company – West</td>
</tr>
<tr>
<td>342</td>
<td>DUKE</td>
<td>Duke Energy Carolinas</td>
</tr>
<tr>
<td>343</td>
<td>SCEG</td>
<td>South Carolina Electric & Gas Company</td>
</tr>
<tr>
<td>344</td>
<td>SCPSA</td>
<td>South Carolina Public Service Authority</td>
</tr>
<tr>
<td>345</td>
<td>DVP</td>
<td>Dominion Virginia Power</td>
</tr>
<tr>
<td>346</td>
<td>SOUTHERN</td>
<td>Southern Company</td>
</tr>
<tr>
<td>347</td>
<td>TVA</td>
<td>Tennessee Valley Authority</td>
</tr>
<tr>
<td>349</td>
<td>SMEPA</td>
<td>South Mississippi Electric Power Association</td>
</tr>
<tr>
<td>350</td>
<td>AEC</td>
<td>Alabama Electric Cooperative</td>
</tr>
<tr>
<td>351</td>
<td>EES</td>
<td>Entergy Electric System</td>
</tr>
<tr>
<td>352</td>
<td>YAD</td>
<td>APGI – Yadkin Division</td>
</tr>
<tr>
<td>353</td>
<td>SEHA</td>
<td>Hartwell - SEPA</td>
</tr>
<tr>
<td>354</td>
<td>SERU</td>
<td>Russell - SEPA</td>
</tr>
<tr>
<td>355</td>
<td>SETH</td>
<td>Thurmond – SEPA</td>
</tr>
<tr>
<td>356</td>
<td>AMMO</td>
<td>Ameren Missouri</td>
</tr>
<tr>
<td>357</td>
<td>AMIL</td>
<td>Ameren Illinois</td>
</tr>
<tr>
<td>360</td>
<td>CWLP</td>
<td>City of Springfield (IL) Water Light & Power</td>
</tr>
<tr>
<td>361</td>
<td>SIPC</td>
<td>Southern Illinois Power Cooperative</td>
</tr>
<tr>
<td>362</td>
<td>EEI</td>
<td>Electric Energy Incorporated</td>
</tr>
<tr>
<td>363</td>
<td>LGEE</td>
<td>E.ON.US</td>
</tr>
</tbody>
</table>
FRCC Florida Reliability Coordination Council

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>FPL</td>
<td>Florida Power & Light</td>
</tr>
<tr>
<td>402</td>
<td>PEF</td>
<td>Progress Energy Florida</td>
</tr>
<tr>
<td>403</td>
<td>FTP</td>
<td>Fort Pierce Utility Authority</td>
</tr>
<tr>
<td>404</td>
<td>GVL</td>
<td>Gainesville Regional Utility</td>
</tr>
<tr>
<td>405</td>
<td>HST</td>
<td>City of Homestead</td>
</tr>
<tr>
<td>406</td>
<td>JEA</td>
<td>Jacksonville Electric Authority</td>
</tr>
<tr>
<td>407</td>
<td>KEY</td>
<td>City of Key West</td>
</tr>
<tr>
<td>409</td>
<td>LWU</td>
<td>City of Lake Worth Utility</td>
</tr>
<tr>
<td>410</td>
<td>NSB</td>
<td>Utilities Commission of New Smyrna Beach</td>
</tr>
<tr>
<td>411</td>
<td>FMPP</td>
<td>Florida Municipal Power Pool</td>
</tr>
<tr>
<td>412</td>
<td>SEC</td>
<td>Seminole Electric Cooperative</td>
</tr>
<tr>
<td>414</td>
<td>STK</td>
<td>City of Starke</td>
</tr>
<tr>
<td>415</td>
<td>TAL</td>
<td>City of Tallahassee</td>
</tr>
<tr>
<td>416</td>
<td>TECO</td>
<td>Tampa Electric Company</td>
</tr>
<tr>
<td>417</td>
<td>FMP</td>
<td>FMPA / City of Vero Beach</td>
</tr>
<tr>
<td>418</td>
<td>NUG</td>
<td>Non-Utility Generators</td>
</tr>
<tr>
<td>419</td>
<td>RCU</td>
<td>Reedy Creek Energy Services, INC.</td>
</tr>
<tr>
<td>421</td>
<td>TCEC</td>
<td>Treasure Coast Energy Center</td>
</tr>
<tr>
<td>426</td>
<td>OSC</td>
<td>Osceola at Holopaw (PEF)</td>
</tr>
<tr>
<td>427</td>
<td>OLEANDER</td>
<td>Oleander IPP at Brevard (FPL)</td>
</tr>
<tr>
<td>428</td>
<td>CALPINE</td>
<td>Calpine at Recker (TECO)</td>
</tr>
<tr>
<td>431</td>
<td>VAN</td>
<td>IPS Avon Park at Vandolah (PEF)</td>
</tr>
<tr>
<td>433</td>
<td>HPS</td>
<td>Hardee Power Station (TECO)</td>
</tr>
<tr>
<td>436</td>
<td>DESOTOGEN</td>
<td>Desoto Generation IPP at Whidden (FPL)</td>
</tr>
<tr>
<td>438</td>
<td>IPP-REL</td>
<td>Reliant at Indian River (FMPP)</td>
</tr>
</tbody>
</table>
SPP – Southwest Power Pool, Inc.

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>502</td>
<td>CELE</td>
<td>Central Louisiana Electric Company</td>
</tr>
<tr>
<td>503</td>
<td>LAFA</td>
<td>Lafayette Utilities</td>
</tr>
<tr>
<td>504</td>
<td>LEPA</td>
<td>Louisiana Energy and Power Authority</td>
</tr>
<tr>
<td>505</td>
<td>ALEX</td>
<td>City of Alexandria</td>
</tr>
<tr>
<td>507</td>
<td>RAYB</td>
<td>Rayburn Country Electric Cooperative</td>
</tr>
<tr>
<td>508</td>
<td>NTEC</td>
<td>North Texas Electric Cooperative</td>
</tr>
<tr>
<td>509</td>
<td>SRGT</td>
<td>Sam Rayburn G&T</td>
</tr>
<tr>
<td>511</td>
<td>AREC</td>
<td>Arkansas Electric Cooperative</td>
</tr>
<tr>
<td>513</td>
<td>CLWL</td>
<td>City of Clarksdale</td>
</tr>
<tr>
<td>514</td>
<td>MEAM</td>
<td>Municipal Energy Agency of Mississippi</td>
</tr>
<tr>
<td>515</td>
<td>SWPA</td>
<td>Southwestern Power Administration</td>
</tr>
<tr>
<td>520</td>
<td>AEPW</td>
<td>American Electric Power</td>
</tr>
<tr>
<td>522</td>
<td>KAMO</td>
<td>Kamo Electric Cooperative</td>
</tr>
<tr>
<td>523</td>
<td>GRDA</td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>524</td>
<td>OKGE</td>
<td>Oklahoma Gas and Electric Company</td>
</tr>
<tr>
<td>525</td>
<td>WFEC</td>
<td>Western Farmers Electric Cooperative</td>
</tr>
<tr>
<td>526</td>
<td>SPS</td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>527</td>
<td>OMPA</td>
<td>Oklahoma Municipal Power Authority</td>
</tr>
<tr>
<td>531</td>
<td>MIDW</td>
<td>Midwest Energy</td>
</tr>
<tr>
<td>534</td>
<td>SUNC</td>
<td>Sunflower Electric Cooperative</td>
</tr>
<tr>
<td>536</td>
<td>WERE</td>
<td>Westar</td>
</tr>
<tr>
<td>537</td>
<td>SIKE</td>
<td>City of Sikeston, Missouri</td>
</tr>
<tr>
<td>539</td>
<td>WEPL</td>
<td>Westplains Energy</td>
</tr>
<tr>
<td>540</td>
<td>MIPU</td>
<td>Missouri Public Service Company</td>
</tr>
<tr>
<td>541</td>
<td>KAPL</td>
<td>Kansas City Power and Light Company</td>
</tr>
<tr>
<td>542</td>
<td>KACY</td>
<td>Board of Public Utilities</td>
</tr>
<tr>
<td>544</td>
<td>EMDE</td>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>545</td>
<td>INDN</td>
<td>City of Independence</td>
</tr>
<tr>
<td>546</td>
<td>SPRM</td>
<td>City Utilities of Springfield</td>
</tr>
</tbody>
</table>
MRO – Midwest Reliability Organization

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>XEL</td>
<td>Xcel Energy North</td>
</tr>
<tr>
<td></td>
<td>MUNI</td>
<td>Municipal data from Xcel Energy</td>
</tr>
<tr>
<td></td>
<td>MMPA</td>
<td>MMPA Municipal data from Xcel Energy</td>
</tr>
<tr>
<td></td>
<td>CMMPA</td>
<td>CMMPA Municipal data from Xcel Energy</td>
</tr>
<tr>
<td>608</td>
<td>MP</td>
<td>Minnesota Power & Light</td>
</tr>
<tr>
<td>613</td>
<td>SMMPA</td>
<td>Southern Minnesota Municipal Power Association</td>
</tr>
<tr>
<td>615</td>
<td>GRE</td>
<td>Great River Energy</td>
</tr>
<tr>
<td>620</td>
<td>OTP</td>
<td>Otter Tail Power Company</td>
</tr>
<tr>
<td>627</td>
<td>ALTW</td>
<td>Alliant Energy West</td>
</tr>
<tr>
<td>633</td>
<td>MPW</td>
<td>Muscatine Power & Water</td>
</tr>
<tr>
<td>635</td>
<td>MEC</td>
<td>MidAmerican Energy</td>
</tr>
<tr>
<td></td>
<td>CBPC</td>
<td>CBPC Municipal data from MEC</td>
</tr>
<tr>
<td></td>
<td>RPGI</td>
<td>RPGI Municipal data from MEC</td>
</tr>
<tr>
<td></td>
<td>IAMU</td>
<td>IAMU Municipal data from MEC</td>
</tr>
<tr>
<td></td>
<td>MMEC</td>
<td>MEC Municipal data from MEC (AMES, CFU, etc.)</td>
</tr>
<tr>
<td>640</td>
<td>NPPD</td>
<td>Nebraska Public Power District</td>
</tr>
<tr>
<td></td>
<td>MEAN</td>
<td>Municipal Energy Agency of Nebraska (NPPD)</td>
</tr>
<tr>
<td></td>
<td>GRIS</td>
<td>Grand Island (NPPD)</td>
</tr>
<tr>
<td>645</td>
<td>OPPD</td>
<td>Omaha Public Power District</td>
</tr>
<tr>
<td>650</td>
<td>LES</td>
<td>Lincoln Electric System, NE</td>
</tr>
<tr>
<td>652</td>
<td>WAPA</td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td></td>
<td>MPC</td>
<td>Minnkota Power Cooperative, Inc.</td>
</tr>
<tr>
<td></td>
<td>BEPC</td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td></td>
<td>NWPS</td>
<td>Northwestern Public Service</td>
</tr>
<tr>
<td></td>
<td>MRES</td>
<td>Missouri River Energy Services</td>
</tr>
<tr>
<td>661</td>
<td>MDU</td>
<td>Montana-Dakota Utilities Co.</td>
</tr>
<tr>
<td>667</td>
<td>MHEB</td>
<td>Manitoba Hydro</td>
</tr>
<tr>
<td>672</td>
<td>SPC</td>
<td>Saskatchewan Power Co.</td>
</tr>
<tr>
<td>680</td>
<td>DPC</td>
<td>Dairyland Power Cooperative</td>
</tr>
<tr>
<td></td>
<td>WPPI</td>
<td>Wisconsin Public Power Inc.</td>
</tr>
<tr>
<td>694</td>
<td>ALTE</td>
<td>Alliant Energy East (ATC)</td>
</tr>
<tr>
<td>696</td>
<td>WPS</td>
<td>Wisconsin Public Service Corporation (ATC)</td>
</tr>
<tr>
<td></td>
<td>CWP</td>
<td>Consolidated Water Power Company (ATC)</td>
</tr>
<tr>
<td></td>
<td>MEWD</td>
<td>Marshfield Electric and Water Company (ATC)</td>
</tr>
<tr>
<td></td>
<td>MPU</td>
<td>Manitowoc Public Utilities (ATC)</td>
</tr>
<tr>
<td>697</td>
<td>MGE</td>
<td>Madison Gas and Electric Company (ATC)</td>
</tr>
<tr>
<td>698</td>
<td>UPPC</td>
<td>Upper Peninsula Power Company (ATC)</td>
</tr>
</tbody>
</table>

ERCOT & WECC

<table>
<thead>
<tr>
<th>Area #</th>
<th>ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>ERCOT</td>
<td>Electric Reliability Council of Texas, Inc.</td>
</tr>
<tr>
<td>800</td>
<td>WECC</td>
<td>Western Electricity Coordinating Council</td>
</tr>
</tbody>
</table>
APPENDIX VI

MOD-032-1 – Attachment 1

The table, below, indicates the information that is required to effectively model the interconnected transmission system for the Near-Term Transmission Planning Horizon and Long-Term Transmission Planning Horizon. Data must be shareable on an interconnectionwide basis to support use in the Interconnection-wide cases. A Planning Coordinator may specify additional information that includes specific information required for each item in the table below. Each functional entity responsible for reporting the respective data in the table is identified by brackets “[functional entity]” adjacent to and following each data item. The data reported shall be as identified by the bus number, name, and/or identifier that is assigned in conjunction with the PC, TO, or TP.

<table>
<thead>
<tr>
<th>steady-state</th>
<th>dynamics</th>
<th>short circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Items marked with an asterisk indicate data that vary with system operating state or conditions. Those items may have different data provided for different modeling scenarios)</td>
<td>(If a user-written model(s) is submitted in place of a generic or library model, it must include the characteristics of the model, including block diagrams, values and names for all model parameters, and a list of all state variables)</td>
<td>Provide for all applicable elements in column “steady-state” [GO, RP, TO]</td>
</tr>
<tr>
<td>1. Each bus [TO]</td>
<td>1. Generator [GO, RP (for future planned resources only)]</td>
<td>2. For purposes of this attachment, the functional entity references are represented by abbreviations as follows: Balancing Authority (BA), Generator Owner (GO), Load Serving Entity (LSE), Planning Coordinator (PC), Resource Planner (RP), Transmission Owner (TO), Transmission Planner (TP), and Transmission Service Provider (TSP).</td>
</tr>
<tr>
<td>a. nominal voltage</td>
<td>2. Excitation System [GO, RP (for future planned resources only)]</td>
<td>2. Mutual Line Impedance Data [TO]</td>
</tr>
<tr>
<td>b. area, zone and owner</td>
<td>3. Governor [GO, RP (for future planned resources only)]</td>
<td>3. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling purposes. [BA, GO, LSE, TO, TSP]</td>
</tr>
<tr>
<td>2. Aggregate Demand 2 [LSE]</td>
<td>4. Power System Stabilizer [GO, RP (for future planned resources only)]</td>
<td></td>
</tr>
<tr>
<td>a. real and reactive power*</td>
<td>5. Demand [LSE]</td>
<td>a. Positive Sequence Data</td>
</tr>
<tr>
<td>b. in-service status*</td>
<td>6. Wind Turbine Data [GO]</td>
<td>b. Negative Sequence Data</td>
</tr>
<tr>
<td>3. Generating Units 3 [GO, RP (for future planned resources only)]</td>
<td>7. Photovoltaic systems [GO]</td>
<td>c. Zero Sequence Data</td>
</tr>
<tr>
<td>a. real power capabilities - gross maximum and minimum values</td>
<td>8. Static Var Systems and FACTS [GO, TO, LSE]</td>
<td>2. For purposes of this item, aggregate Demand is the Demand aggregated at each bus under item 1 that is identified by a Transmission Owner as a load serving bus. An LSE is responsible for providing this information, generally through coordination with the Transmission Owner.</td>
</tr>
<tr>
<td>b. reactive power capabilities - maximum and minimum values at real power capabilities in 3a above</td>
<td>9. DC system models [TO]</td>
<td>3. Including synchronous condensers and pumped storage.</td>
</tr>
<tr>
<td>c. station service auxiliary load for normal plant configuration (provide data in the same manner as that required for aggregate Demand under item 2, above).</td>
<td>10. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling purposes. [BA, GO, LSE, TO, TSP]</td>
<td></td>
</tr>
<tr>
<td>d. regulated bus* and voltage set point* (as typically provided by the TOP)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
that required for transformer under item 6, below)
g. generator type (hydro, wind, fossil, solar, nuclear, etc)
h. in-service status*

4. AC Transmission Line or Circuit [TO]
a. impedance parameters (positive sequence)
b. susceptance (line charging)
c. ratings (normal and emergency)*
d. in-service status*

5. DC Transmission systems [TO]

6. Transformer (voltage and phase-shifting) [TO]
a. nominal voltages of windings
b. impedance(s)
c. tap ratios (voltage or phase angle)*
d. minimum and maximum tap position limits
e. number of tap positions (for both the ULTC and NLTC)
f. regulated bus (for voltage regulating transformers)*
g. ratings (normal and emergency)*
h. in-service status*

7. Reactive compensation (shunt capacitors and reactors) [TO]
a. admittances (MVars) of each capacitor and reactor
b. regulated voltage band limits* (if mode of operation not fixed)
c. mode of operation (fixed, discrete, continuous, etc.)
d. regulated bus* (if mode of operation not fixed)
e. in-service status*

8. Static Var Systems [TO]
a. reactive limits
b. voltage set point*
c. fixed/switched shunt, if applicable
d. in-service status*

9. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling purposes. [BA, GO, LSE, TO, TSP]
APPENDIX VII

Modeling of Generator Parameters

1. Applicable Facilities
 The following Generators and SVCs connected to BES (100 kV and greater) or in accordance with the SPP OATT or Member OATT.
 i. All Individual units greater than 20 MVA (gross nameplate rating)
 ii. All Synchronous Condensers greater than 20 MVA (gross nameplate rating)
 iii. Generating plant/facilities greater than 75 MVA (gross aggregate nameplate rating)

2. Modeling Process for Generator Parameters
 a. The Generator parameter P_{MAX} shall be modeled as a gross seasonal maximum capability based on MOD-025-02 and SPP Planning Criteria 7.1 testing and reporting procedures.
 b. Generating plant station service and auxiliary loads shall be represented in normal plant configuration, corresponding to the load appropriate to operation of the generating plant. All station service and auxiliary load representations shall:
 i. Be modeled explicitly on the appropriate bus\(^4\), corresponding to the voltage to which the auxiliary load is served. Model representations of auxiliary load connected to the generating unit bus (Figure VII-1), auxiliary load modeled with separate transformation (Figure VII-2), and auxiliary load modeled on the high-side bus of the station service transformer (Figure VII-3) are acceptable.
 ii. Be annotated as non-scalable.

 c. Experience has shown that generating plant station service and auxiliary load may vary considerably based upon generating plant dispatch and operating conditions.

\(^4\) Station service and auxiliary load shall not be netted against generating plant dispatch by reducing the P_{gen} of a unit with an amount corresponding to the plant auxiliary load.
Therefore, generating plant station service and auxiliary load may be modeled as aggregated or non-aggregated generating plant load, representing the total quantity of fixed and variable station service and auxiliary load.

If generating plant station service and auxiliary load is **aggregated**, the total load quantity shall properly reflect the total real and reactive loading for the generating units. The aggregated generating plant station service and auxiliary load shall use “SS” in the Load ID field (Figure VII-4a). If there are more than one aggregated generating plant station service and auxiliary load, use “Sn” in the Load ID field to delineate the multiple aggregated loads.

If generating plant station service and auxiliary load is **not aggregated**, each load quantity shall properly reflect the real and reactive loading expected during the corresponding dispatch (e.g., generating plant Pgen may be less than Pmax) and operating conditions for the generating units. Combined loads are analogous to aggregating generating plant station service and auxiliary load, with additional detail specifying the fixed and variable portions of total generating plant load (Figure VII-4b). The combined or discrete (Figure VII-4b and Figure VII-4c) load representations shall:

i. Use “Fn” in the Load ID field\(^5\) to designate fixed load quantities that do not vary with plant dispatch.

ii. Use “Vn” in the Load ID field\(^4\) to designate variable load quantities that do vary with plant dispatch.

Figure VII-4. Examples of generating plant auxiliary load representations (aggregated, combined, and discrete).

\(^{5}\) “n” represents a unique numeric value. PSS/E requires each load placed at a bus to have a unique Load ID.

3. Modeling of Wind/Solar Renewable Resources \(P_{GEN} \)

a. \(P_{GEN} \) value should not exceed average historical seasonal values for the Light Load, Spring, Summer, Summer Shoulder, Fall, and Winter Cases.
b. If historical data is not available, P_{GEN} values may be based on the procedure outlined in SPP Planning Criteria 7.1.5.3.7.

4. Data Exemption Process

MDWG Members requested that there be a process by which the modeled generator maximum is different from the MOD-025-02/SPP Planning Criteria testing. In accordance with Attachment 1, Section 5 of MOD-025-02 an exception process for generators that have undergone testing per MOD-025-02/SPP Planning Criteria 7.1 for these differences is as follows:

a. Member will fill out the “Exemption Form” and send it via e-mail to “Engineering Modeling” containing:
 i. Generator Name
 ii. Generator Bus Number
 iii. Requested change(s) that deviate from the MOD-025-02/SPP Planning Criteria testing.
 iv. Justification of the change if it is greater than or less than 5% of the MOD-025-02/SPP Planning Criteria testing.

SPP Modeling will process the Exemption and communicate back to the member requesting the exemption that it has been granted or if additional information is needed to process the exemption within 30 days of submission of the request.

**Effective date of sections 1&3 is in effect.
**Effective date of section 2 is July 1, 2016.
**Effective date of section 4 is July 1, 2016.
APPENDIX VIII - Balancing and Transactions

Background

A core principal of steady-state power flow modeling is the balance between load and generation. A system swing generating unit is a fundamental requirement of the modern formulation of the linear power flow problem (net complex power injection into nodal admittance network). In the balanced three-phase power flow formulation, a swing generator serves the imbalance of power for the entire electrical network. However, in real power systems, Balancing Authorities ensure that frequency regulation is achieved by matching generation to load within a subsection of the entire interconnected power system. Thus, in most power flow software, a vast impedance network may be segregated into groups of busses representing a model area. While typically analogous to a Balancing Authority Area or control area, the concept of a model area is straightforward: model areas allow the electrical network to be sectioned in such a way as to pool together generation, loads, and losses for the purpose of scheduling power flows throughout the electrical network. Model areas are not limited to being demarcated by physical load balancing boundaries; on the contrary, model areas are very effective at allowing individual generation and load-serving companies to properly allocate resources and demand, including transactions with other model areas. While most power flow software enforces that each generating unit inherits its model area designation from the bus to which it is connected, many modern power flow software packages allow ZIP loads and induction machine loads to be assigned to model areas that may be different than the busses to which they are connected. In this way, each generating unit and load is grouped into common balancing pools, represented by the model area (Figure 1).

6 The traditional power flow formulation is the matrix algebraic calculation of voltage phasor (magnitude and angle) at each interstitial connectivity node (bus) within an impedance network under balanced three-phase, steady-state conditions.

7 Model areas typically have a single generator designated as the area slack machine, although this is not a modeling constraint. The area slack machine is analogous to the system swing machine in that it compensates for the power imbalance within the model area, when the power flow solution is solved to respect inter-area transfers (area net interchange control).

8 ZIP refers to constant impedance, constant current, or constant power load representations, including a combination of each.
To be clear: it is inappropriate to refer to either a “generation area” or a “load area”. Instead, it is important to understand that the modeling concept of the “Area” field designated for bus, load, and generation refers to the model area to which that model object belongs. To reiterate, the model area to which a load is assigned indicates which generation resources will serve that load, independent of the model area of the bus to which that load is attached. This concept is of particular importance when interchange is used to obtain power flow solutions.

Within each model area that contains generating units, a single generating unit must be designated as the slack machine. While the dispatch (Pgen) of each non-slack generating unit is set to a prescribed value, the slack machine dispatch varies to compensate for any imbalance within the model area. In many cases, load obligations and transmission losses associated with delivering power to the loads within a model area may not be totally served by the capacity of resources in-service within a model area. In these situations, inter-area transfers are common, representing power purchase agreements (PPA) that reflect the firm purchase or sale of power from generation resource in one model area to another for the purpose of serving load. Similarly, intra-area transfers representing contractual or PPA obligations between resource and load owners within a model area are also common. In total, all inter- and intra-area transfers are referred to as “transactions” and must be properly accounted for to achieve power flow model balancing and accurate model area tie-line loading.
Across the entire interconnected impedance network, one-and-only-one generating unit must be designated as the system swing unit. The system swing serves any overall imbalance arising from imbalanced exchanges between individual model areas. In its simplest expression, the model area designation facilitates the analysis of scheduled power flow between interconnected regions of the impedance network, which is useful for assessing conventional tie-line loading. More broadly, however, the use of model areas allows exchanges of generating resources that are intended to serve loads that may be very distant from the actual generating unit, giving rise to bilateral transactions across model area boundaries, integrated market operations, and efficient resource dispatch, as well as others.

Load is generally served by generation resources within a common model area. Likewise, both the load and the bus to which the load is connected reflect a common model area (as shown in the Area field of each). The same principle applies to transacted resource-to-load; loads that serve as the sink portion of a transacted real power quantity will reside in the model area of the sink Data Owner (and may retain the load ID of the Data Owner of the load itself). Exceptions are called pseudo-ties, representing where the resource that serves the load is outside of the model area where the load resides. Pseudo-tied loads are typically found when the Area field assigned to the load is different than the Area field of the bus, to which the load is connected, however generation pseudo-ties are possible, as well. For modeling purposes, pseudo-tie representations are permitted between two model areas within the SPP Balancing Authority (referred to an intra-SPP pseudo-tie), as well as between a model area within the SPP Balancing Authority and a model area of a non-SPP Balancing Authority (referred to an inter-SPP pseudo-tie). Intra-SPP pseudo-ties can be an effective means of differentiating which model area provides resource to unique load delivery obligations, but may be problematic if used to avoid proper resource, load, and loss accounting through model area transactions. Separately, inter-SPP pseudo-tie arrangements are typically unique contractual arrangements where firm transmission service (e.g., network services, point-to-point) has been pre-arranged to direct resource from/to an external model area, into/out of a model area where the load resides (see Figure 2). Inter-SPP pseudo-tied loads are generally an exception to the norm and the use of inter-SPP pseudo-tied loads should be justified (e.g., reference to an SPP load-balancing meter point, pseudo-tie registration in the SPP marketplace, etc.). Data Owners shall not create pseudo-tie modeling representations of load that incorporates fictitious topology; Data Owners may create pseudo-tie modeling representations of generation necessary, given the load flow software constraints.
Transactions Data Requirements

Data Owners shall submit all transactions data via the MDWG Data Submittal Workbook. Additionally, Data Owners shall:

1. Coordinate all bilateral transactions data with all Data Owners who are party to the transaction, prior to submitting the data.
2. Submit only the bilateral portion of the transaction for which the Data Owner is responsible. For example, in a bilateral transaction between two Data Owners (SPP-members), each Data Owner shall submit one half of the transaction (source or sink). In the case of a bilateral transaction between a Data Owner (SPP-member) and a non-SPP member, such as a MISO-member, the Data Owner (SPP-member) shall submit their portion (source or sink) of the bilateral transaction, upon coordination with the non-SPP member. SPP staff will then submit the non-SPP member portion (source or sink) of the bilateral transaction.
3. Review and update transactions data according to the model building schedule.
4. Load and resource transactions may be inter-area (i.e., reciprocal transaction from an SPP Market Participant to another SPP Market Participant, both within the SPP Balancing Authority Area) or

Figure 2. Four types of inter-SPP pseudo-ties.
external area (i.e. traditional BA-to-BA interchange). Transactional data collected by Data Owners often have tens of kilowatts precision. However, for the purposes of the ERO, or its designee, Interconnection-wide models, external net interchange schedules are required to be entered as whole MW quantities. Therefore, Data Owners shall submit transaction data according to:

a. Inter-area transactions (transactions of load and resource that are wholly contained within the SPP Balancing Authority Area) are preferred to be integer values (i.e. whole MW); however, shall not exceed tens of kilowatt precision (i.e., two decimal MW precision; 0.01MW).

b. External area transaction (i.e. scheduled net interchange between the SPP Balancing Authority and an external Balancing Authority) shall be rounded to the nearest integer (i.e. whole MW).

5. Ensure that source transactions have positive polarity, while sink transactions have negative polarity (Figure 3 and Figure 4).

![Diagram: Example of Inter-area transfer (transaction)](Figure 3)

Inter-area Bilateral transaction description

Data Owner A exports MW to **Data Owner B**

Data Owner B imports MW from **Data Owner A**

Transaction accounting in Data Submittal Workbook

<table>
<thead>
<tr>
<th>PC</th>
<th>From Area #</th>
<th>From Area</th>
<th>From Resp Entity #</th>
<th>From Resp Entity Name</th>
<th>To Area #</th>
<th>To Area</th>
<th>To Resp Entity #</th>
<th>To Resp Entity Name</th>
<th>ID</th>
<th>Start</th>
<th>Stop</th>
<th>Firm</th>
<th>201x Series MDWG Model - 18G</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner A</td>
<td>2</td>
<td>Area 2</td>
<td>2</td>
<td>Data Owner B</td>
<td>ABC111</td>
<td>12/1/2013</td>
<td>3/1/2020</td>
<td>X</td>
<td>MW</td>
</tr>
<tr>
<td>Not SPP</td>
<td>2</td>
<td>Area 2</td>
<td>2</td>
<td>Data Owner B</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner A</td>
<td>ABC111</td>
<td>12/1/2013</td>
<td>3/1/2020</td>
<td>X</td>
<td>-MW</td>
</tr>
</tbody>
</table>
Intra-area Bilateral transaction description

Data Owner A exports MW to Data Owner C
Data Owner C imports MW from Data Owner A

Transaction accounting in Data Submittal Workbook

<table>
<thead>
<tr>
<th>PC</th>
<th>From Area #</th>
<th>From Area</th>
<th>From Resp Entity #</th>
<th>From Resp Entity Name</th>
<th>To Area #</th>
<th>To Area</th>
<th>To Resp Entity #</th>
<th>To Resp Entity Name</th>
<th>ID</th>
<th>Start</th>
<th>Stop</th>
<th>Firm</th>
<th>201x Series MDWG Model - 18G</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner A</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner C</td>
<td>XYZ112</td>
<td>12/1/2013</td>
<td>3/1/2020</td>
<td>X</td>
<td>MW</td>
</tr>
<tr>
<td>SPP</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner C</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner A</td>
<td>XYZ112</td>
<td>12/1/2013</td>
<td>3/1/2020</td>
<td>X</td>
<td>-MW</td>
</tr>
</tbody>
</table>

Figure 4. Example of Intra-area transfer (transaction).

6. Complete the following required Data Submittal Workbook data fields for each source and sink portion of a bilateral transaction:
 a. Planning Coordinator (PC).
 b. From Area #.
 c. From Area Name.
 d. From Responsible Entity #.
 e. From Responsible Entity Name.
 f. To Area #.
 g. To Area Name.
 h. To Responsible Entity #.
 i. To Responsible Entity Name.
 j. Transaction ID.
 k. Transaction Start date.
1. Transaction Stop date.
2. Firm or Non-Firm Transaction.
3. Transaction quantity (in MW) for all appropriate seasonal MDWG Model Series cases.

7. When a part or all of a bilateral transaction is referenced by an Open Access Same-Time Information System (OASIS) number, used by the marketer for scheduling, enter the OASIS number in the appropriate Data Submittal Workbook field.

8. The following Data Submittal Workbook information is reserved for SPP staff usage and is not required from the Data Owner of each bilateral transaction:
 a. From Attributes.
 b. To Attributes.
 c. Link Number.
 d. Plant.
 e. Capacity.
 f. Roll Over Rights.
 g. S0 Scalable.
 h. S5 Scalable.
 i. OASIS Comment.
 j. Comments.
 k. Related Reference.