Southwest Power Pool, Inc.
Model Development Working Group
Conference Call
June 7th: 9:00 A.M. – 12:00 P.M. (CDT)

• M I N U T E S •

Agenda Item 1 – Administrative Items:

– Agenda Item 1a and 1b – Call to Order & Antitrust Statement:
The meeting was called to order at approximately 9:01 a.m. on June 7. The SPP Antitrust statement was read to the group at the start of the meeting on June 7.

– Agenda Item 1c and 1d – Attendance and Proxies:
The following MDWG members and guests attended.

MDWG Members present:

<table>
<thead>
<tr>
<th>MDWG Member</th>
<th>Present</th>
<th>Proxy</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nate Morris</td>
<td>YES</td>
<td></td>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>Derek Brown</td>
<td>YES</td>
<td></td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Dustin Betz</td>
<td>YES</td>
<td></td>
<td>Nebraska Public Power District</td>
</tr>
<tr>
<td>John Boshears</td>
<td>YES</td>
<td></td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jerad Ethridge</td>
<td>YES</td>
<td></td>
<td>Oklahoma Gas & Electric</td>
</tr>
<tr>
<td>Joe Fultz</td>
<td>YES</td>
<td></td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Wayne Haidle</td>
<td>YES</td>
<td></td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Holli Krizek</td>
<td>YES</td>
<td></td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Reené Miranda</td>
<td>NO</td>
<td>Aravind Chellappa</td>
<td>YES</td>
</tr>
<tr>
<td>Alex Mucha</td>
<td>YES</td>
<td></td>
<td>Oklahoma Municipal Power Authority</td>
</tr>
<tr>
<td>Gimod Olapurayil</td>
<td>YES</td>
<td></td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Scott Schichtl</td>
<td>YES</td>
<td></td>
<td>Arkansas Electric Cooperative Company</td>
</tr>
<tr>
<td>Jason Shook</td>
<td>YES</td>
<td></td>
<td>GDS Associates</td>
</tr>
<tr>
<td>Liam Stringham</td>
<td>YES</td>
<td></td>
<td>Sunflower Electric Power Corporation</td>
</tr>
<tr>
<td>Sunny Raheem</td>
<td>YES</td>
<td></td>
<td>Southwest Power Pool, Inc.</td>
</tr>
</tbody>
</table>

Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

Additional Guests present:

In addition to WebEx attendance

<table>
<thead>
<tr>
<th>Guests</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Green</td>
<td>American Electric Power</td>
</tr>
<tr>
<td>Jerry Bradshaw</td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jordan Lamb</td>
<td>East River Electric</td>
</tr>
<tr>
<td>Charles Aleman, Mark Reinart</td>
<td>Golden Spread Electric Coop</td>
</tr>
<tr>
<td>Dona Parks, Kiet Nguyen</td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Charles Shue, Matthew Keenan, Michael Wegner</td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Lafayette Gatewood IV, Marc Moor, Ryan Baysinger</td>
<td>Kansas City Power & Light</td>
</tr>
<tr>
<td>John Payne</td>
<td>Kansas Electric Power Cooperative</td>
</tr>
<tr>
<td>James Ging</td>
<td>Kansas Power Pool</td>
</tr>
<tr>
<td>Alan Burbach</td>
<td>Lincoln Electric System</td>
</tr>
<tr>
<td>Andy Berg, John Weber</td>
<td>Missouri River Energy Services</td>
</tr>
<tr>
<td>Armin Sehic, Bruce Doll</td>
<td>Municipal Energy Agency of Nebraska</td>
</tr>
<tr>
<td>Jarrod Wolford</td>
<td>Northeast Texas Electric Cooperative</td>
</tr>
<tr>
<td>Daryl Huslig, James Thomas</td>
<td>Oklahoma Gas & Electric Company</td>
</tr>
<tr>
<td>Scott Mijn</td>
<td>Southwest Power Administration</td>
</tr>
<tr>
<td>Aravind Chellappa</td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Christopher Gilden, Stacy Brothers</td>
<td>Tri-State Generation and Transmission</td>
</tr>
<tr>
<td>Chris Colson, Garrick Nelson, Josie Daggett</td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Joe Williams, Shaun Golden</td>
<td>Western Farmers Electric Coop</td>
</tr>
</tbody>
</table>
– Agenda Item 1e(i) – Agenda Review (Action Item):
Nate Morris asked the group if they had any modifications to the agenda or issues with the posted material. The group provided redline corrections to the meeting time. Aravind Chellappa requested that MOD-32-1 R1.3 Language be under Agenda #6 (a).i. The group agreed to add the MOD-32-1 item to the meeting agenda.

Motion: Dustin Betz motioned to approve the agenda as presented during the meeting (Attachment 1 - 1e. MDWG Meeting Agenda 20180607_redline.docx). Aravind Chellappa seconded the motion. The motion passed unanimously.

– Agenda Item 1f(i) – May 9th-10th, 2018 Meeting Minutes Review (Action Item):
Nate Morris asked the group if they had any modifications or issues with the posted meeting minutes. Sunny Raheem mentioned receiving redline edits from SPS for the approved April 5th, 2018 meeting minutes and the previous May 9th-10th meeting minutes. Sunny presented the May 9th-10th meeting minutes SPS edits (Attachment 2 - 1fi. MDWG Minutes May 9-10, 2018_redline.docx). Nate and Sunny requested additional time to discuss how to proceed with the April 5th edits (Attachment 3 - 1fi. MDWG Minutes April 5, 2018-04232018_redline.docx).

The group requested additional time to review the May 9th-10th meeting minutes. Holli Krizek requested that the previous meeting minutes be included in the next meeting as background material. This request is addition to posting previous meeting materials after the associated meeting.

Nate tabled the May 9th-10th meeting minutes to allow the group additional time to review the meeting minutes. Nate tabled the approved April 5th meeting minute edits to allow additional procedure follow up discussions.
--- Agenda Item 1g – Action Items Review:
Sunny Raheem presented an overview of the current action items and status. Sunny mentioned he would work with Anthony Cook to incorporate active action items prior to March 2018 in the new action item document. The group did not voice any concerns or questions pertaining to the action item list.

Action Item: SPP-Staff to update action items list by adding in active action items that pre-exist before March 2018.

--- Agenda Item 2 – GIC modeling data (Approval Item):
Chris Colson presented to the group the TPLTF overview for TPL-007-1 GMD-related modeling data. Chris discussed with the group the TPL-007-1 implementation plan, TPLTF guidance document key concepts, approval of SPP GIC modeling data, and TPLTF intentions short-term and long-term.

Scott Jordan and Sunny Raheem mentioned to the group the GIC information was posted to GlobalScape for Transmission Planners and MDWG Members. Additional people should request access from SPP-Staff via RMS.

Derek Brown asked if is there going to be a final drop down date for updates to the models in order to calculate GIC flows. Chris Colson commented that the plan is for the TPLTF to transition the models to the MDWG. Chris mentioned he envisioned a drop down date but was not sure at this time when that would be. Eddie Watson asked if a process needed to be in place to update the models. Chris said that it might be better to have this discussion offline with a few TPLTF members and SPP staff on how best to handle updates going forward.

MDWG members and SPP-Staff thanked Chris Colson and Scott Jordan for their efforts on the GMD process and coordination of the GIC data.

Motion: Holli Krizek motioned to approve GIC model data presented during the meeting (Material Posted at: GlobalScape under "Modeling (CEII, RSD) → MDWG GMD Model Set"). Dustin Betz seconded the motion. The motion passed with one abstention from Jerad Ethridge.

Jerad mentioned the following reasons behind his abstention
- GIC model data was posted on June 5th with the vote for approval on June 7th, therefore not allowing adequate time for review of all the data.
- The checking that OKGE has performed in this short review period found that some of the data that we believe was submitted did not make it into the consolidated set.
- OKGE understood the data may be resubmitted and applied in the future, at the time of the vote I did not believe it would be appropriate to give a yes or no vote on this item.
Agenda Item 3 – 2019 MDWG Powerflow/Short Circuit Model Build:

- Agenda Item 3a – Model Selections (Approval Item):
Nate Morris asked Sunny Raheem recap the model selection presented at the last MDWG meeting and the alternate model selection developed since the last meeting. Sunny provided an overview of the model selection presented at the last MDWG meeting and a modified version of the model selection to the group. Sunny went over the model justification spreadsheet for SPP internal studies and the various reason for the different model selections.

Nate Morris stated he would have to drop off the call and asked the Vice-Chairman, Derek Brown, to chair the rest of the meeting.

The group discussed the model selections and Year 1 definition in depth with SPP-Staff. Additionally SPP-Staff, Jason Terhune and Scott Jordan, were present during the discussion. They provided SPP-Staff input on TPL studies and associated model selections. SPP-Staff recommended not changing or eliminating models during the 2019 Series model selection due to time constraints and possibility of oversight on the decision. SPP-Staff recommended taking a thorough review over the model selection in the next year. The group considered SPP-Staff comments while slightly altering the model selections presented.

Derek opened the floor to entertain a motion:

Motion: Holli Krizek motioned to approve the elimination/adjustment and remaining models as presented during the meeting (Attachment 4 - 3a. Seasonal_Model_Selection_Overview_06052018.pptx). Jerad Ethridge seconded the motion. The motion passed unanimously.

Eddie Watson requested SPP-Staff have an opportunity to review the model selection changes to provide any concerns during the next meeting.

Action Item: SPP-Staff to provide concerns pertaining to the approved model selection list during the next meeting.

Agenda Item 4 – ITP Section 9.3 Overview:
SPP-Staff requested to table this discussion for a future meeting due to meeting time constraints.

Agenda Item 4 tabled for next meeting
Agenda Item 5 – MDWG Membership Poll for Transmission Planners:
Moses Rotich provided the group the membership interest straw poll results from Transmission Planners (TPs) that are currently not members of the MDWG. Moses stated that he received responses from four TPs that are interested in being voting members. Aravind Chellappa provided his viewpoint that active TPs participating in the model build should be voting MDWG members. Derek Brown mentioned that that some changes would have to be made to the MDWG Charter to include TPs. Aravind Chellappa asked SPP-Staff for their opinion about growing the MDWG membership. Eddie Watson and Sunny Raheem stated their voting concerns and thoughts about a very large voting group for the scope of model development.

Action Item: Chairman, Vice-Chairman, and Staff Secretary to provide draft language for Charter membership updates at next meeting

Agenda Item 6 – MDWG Manual (Approval Item):
- **Agenda Item 6a – Language Approval (Approval Item):**
 Tabled for the next meeting

- **Agenda Item 6ai – MOD-32-1 R1.3 Language Approval (Approval Item):**
 Sunny Raheem presented the SPS proposed MOD-32-1 R1.3 language change in the MDWG manual to the group. Aravind Chellappa provided comments on the reasoning behind the requirement. The group largely agreed this language is needed.

 Derek Brown opened the floor to entertain a motion:

 Motion: Holli Krizek motioned to approve MOD-32-1 R1.3 language as presented during the meeting (Attachment 5 - 6ai. MDWG Manual_With_MDWG-6-7_redline.docx). Alex Mucha seconded the motion. The motion passed unanimously.

 Action Item: SPP-Staff to post updated MDWG Manual with approved language

- **Agenda Item 6b – Power Flow, Dynamics, Short Circuit Task Force Discussion:**
 Tabled for the next meeting
Agenda Item 7 – ITP to MMWG Conversion Discussion:
Tabled for the next meeting

Agenda Item 8 – MDWG Models dispatched by SPP Discussion:
Tabled for the next meeting

Agenda Item 9 – Engineering Data Submission Tool (EDST) Status:
Sunny Raheem briefly provided a status update for the Engineering Data Submission Tool. Sunny presented the changes for the upcoming milestone dates, testing scorecard results for MDWG participants, and main concerns from MDWG testers. Sunny mentioned SPP-IT is working on mapping in the latest and greatest 2018 MDWG data submittal workbook rather than the 2017 as planned into EDST. Sunny mentioned this efficiency would help the transition to EDST greatly.

John Weber noted concerns about moving forward with the EDST tool for the 2019 series (cumbersome, bugs, etc.). John mentioned even if some enhancements implemented, he would need another round of testing to make sure that the tool works well. Wayne Haidle agreed with John that the tool is not production ready.

Eddie Watson and Sunny Raheem re-iterated SPP-Staff support for EDST in the 2019 series since the tool provides comparable deliverable as the workbook. SPP-Staff mentioned this is the first release of the tool and enhancements will be considered for future releases. Derek Brown and Sunny Raheem suggested to the group that a priority list of enhancements might be an efficient way to implement changes going forward.

Action Item: Data Submitters to provide enhancements for consideration in MDWG prioritization list.
Agenda Item 10 – Administrative Items:

- **Agenda Item 10a – Summary of Action Items:**
 - SPP-Staff to update action item list
 - SPP-Staff to provide concerns related to approved model selection list
 - Chairman, Vice-Chairman, and Staff Secretary to provide draft Charter membership language
 - SPP-Staff to post updated MDWG Manual with approved language
 - Data Submitters to provide enhancements for consideration in MDWG prioritization list.

- **Agenda Item 10b – Future Meetings:**
 Derek Brown asked Sunny Raheem to provide a recap of the upcoming future meetings. Sunny mentioned the upcoming July 5th MDWG conference call. Sunny suggested the need for an additional June call. Sunny asked the group if they would like to keep the July 5th call where it is at or to reschedule it the week after. The group requested a Doodle Poll be sent out to provide responses for the additional June call and the possibility of rescheduling the July 5th call.

 Action Item: SPP-Staff to send out Doodle Poll for additional June call and alternate July times.

- **Agenda Item 10c – Adjourn Meeting:**
 With no further discussion, Derek Brown solicited a motion to adjourn the meeting.

 Motion: Dustin Betz motioned to adjourn the meeting. Aravind Chellappa seconded it. The motion passed unanimously.

 The meeting was adjourned at 12:15PM (CDT).

Respectfully submitted,
Sunny Raheem
SPP Staff Secretary
Southwest Power Pool, Inc.
MODEL DEVELOPMENT WORKING GROUP
June 7, 2018
Net Conference

• A G E N D A •

9:00 a.m. – 12:00 p.m. (CDT)

1. Administrative Items .. Nate Morris
 a. Call to Order
 b. Antitrust Statement
 c. Attendance
 d. Proxies
 e. Agenda Review (Approval Item)
 i. Acknowledgement of discuss meeting materials
 f. Previous Meeting Minutes
 i. May 9th – 10th, 2018 (Approval Item)
 g. Action Items Review

2. GIC modeling data (Approval Item*) ... Scott Jordan/Chris Colson

3. 2019 MDWG Powerflow/Short Circuit Model Build
 a. Model Selections (Approval Item*) ... All

4. ITP Section 9.3 Overview ... SPP Staff

5. MDWG Membership Poll for Transmission Planners ... SPP Staff

6. MDWG Manual
 a. Language Approval (Approval Item*) ... All
 b. MOD-32-1 R1.3 Language Approval (Approval Item*) All
 c. Power Flow, Dynamics, Short Circuit Task Force Discussion All

7. ITP to MMWG Conversion Discussion ... Moses Rotich

8. MDWG Models dispatched by SPP Discussion ... Moses Rotich

9. Engineering Data Submission Tool (EDST)
 a. Status Update .. Eddie Watson/Sunny Raheem
 b. Stakeholder Testing Scorecard & Results .. Eddie Watson/Sunny Raheem

10. Administrative Items ... Nate Morris
 a. Summary of Action Items
 b. Future Meetings
 i. Additional June conference call
 c. Adjourn

Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

Note: The approval items denoted with "***" shall be jointly developed by PC, TP, and MDWG.
Southwest Power Pool, Inc.
Model Development Working Group
Doubletree Stapleton North - Aspen III BC
4040 Quebec Street
Denver, Colorado 80216
May 9th: 8:00 A.M. – 5:00 P.M. (MDT)
May 10th: 8:00 A.M. – 12:00 P.M. (MDT)

• M I N U T E S •

Agenda Item 1 – Administrative Items:

– Agenda Item 1a and 1b – Call to Order & Antitrust Statement:
The meeting was called to order at approximately 8:00 a.m. on May 9th and 10th. The SPP Antitrust statement was read to the group at the start of the meeting on May 9th and 10th.

– Agenda Item 1c and 1d – Attendance and Proxies:
The following MDWG members and guests attended.

<table>
<thead>
<tr>
<th>MDWG Member</th>
<th>Present</th>
<th>Proxy</th>
<th>Present</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nate Morris</td>
<td>YES</td>
<td></td>
<td></td>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>Derek Brown</td>
<td>YES</td>
<td></td>
<td></td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Dustin Betz</td>
<td>YES</td>
<td></td>
<td></td>
<td>Nebraska Public Power District</td>
</tr>
<tr>
<td>John Boshears</td>
<td>YES</td>
<td></td>
<td></td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jerad Ethridge</td>
<td>YES</td>
<td></td>
<td></td>
<td>Oklahoma Gas & Electric</td>
</tr>
<tr>
<td>Joe Fultz</td>
<td>YES</td>
<td></td>
<td></td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Wayne Haidle</td>
<td>YES</td>
<td></td>
<td></td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Holli Krizek</td>
<td>YES</td>
<td></td>
<td></td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Keene Miranda</td>
<td>YES</td>
<td></td>
<td></td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Alex Mucha</td>
<td>YES</td>
<td></td>
<td></td>
<td>Oklahoma Municipal Power Authority</td>
</tr>
<tr>
<td>Gimod Olapurayil</td>
<td>YES</td>
<td></td>
<td></td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Scott Schicht</td>
<td>YES</td>
<td></td>
<td></td>
<td>Arkansas Electric Cooperative Company</td>
</tr>
<tr>
<td>Jason Shook</td>
<td>YES</td>
<td></td>
<td></td>
<td>GDS Associates</td>
</tr>
<tr>
<td>Liam Stringham</td>
<td>NO</td>
<td>Tanner New</td>
<td>YES</td>
<td>Sunflower Electric Power Corporation</td>
</tr>
<tr>
<td>Sunny Raheem</td>
<td>YES</td>
<td></td>
<td></td>
<td>Southwest Power Pool, Inc.</td>
</tr>
</tbody>
</table>

Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

<table>
<thead>
<tr>
<th>Guests</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Green</td>
<td>American Electric Power</td>
</tr>
<tr>
<td>Jeff Crites, Jerry Bradshaw, Kevin Foflygen</td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jordan Lamb</td>
<td>East River Electric</td>
</tr>
<tr>
<td>Syed Ahmad</td>
<td>Federal Energy Regulatory Commission</td>
</tr>
<tr>
<td>Mark Reinart, Charles Aleman</td>
<td>Golden Spread Electric Coop</td>
</tr>
<tr>
<td>Dona Parks, Kiet Nguyen</td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Charles Shue</td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Marc Moor, Ryan Baysinger, Lafayette Gatewood IV</td>
<td>Kansas City Power & Light</td>
</tr>
<tr>
<td>John Payne</td>
<td>Kansas Electric Power Cooperative</td>
</tr>
<tr>
<td>Alan Burbach</td>
<td>Lincoln Electric System</td>
</tr>
<tr>
<td>Jence Mandizha</td>
<td>Midwest Energy</td>
</tr>
<tr>
<td>Andy Berg, John Weber</td>
<td>Missouri River Energy Services</td>
</tr>
<tr>
<td>Bruce Doll</td>
<td>Municipal Energy Agency of Nebraska</td>
</tr>
<tr>
<td>Jarrod Woford</td>
<td>Northeast Texas Electric Cooperative</td>
</tr>
<tr>
<td>Daryl Huslig</td>
<td>Oklahoma Gas & Electric Company</td>
</tr>
<tr>
<td>John Mayhan</td>
<td>Omaha Public Power District</td>
</tr>
<tr>
<td>Shawnee Claiorn-Pinto</td>
<td>Public Utility Commission of Texas</td>
</tr>
<tr>
<td>Dave Sargent, Scott Mijn</td>
<td>Southwest Power Administration</td>
</tr>
<tr>
<td>Aravind Chellappa</td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Tanner New</td>
<td>Sunflower Electric Power Cooperative</td>
</tr>
<tr>
<td>Christopher Gilden, Cody Sickler</td>
<td>Tri-State Generation and Transmission</td>
</tr>
<tr>
<td>Jeremy Harris, Clifford Franklin</td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Josie Daggett</td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Joe Williams, Shaun Golden</td>
<td>Western Farmers Electric Coop</td>
</tr>
</tbody>
</table>
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

-- Agenda Item 1e(i) – Agenda Review (Action Item):
Nate Morris asked the group if they had any modifications to the agenda or issues with the posted material. The group did not voice any agenda modifications or issues.

Nate opened the floor to entertain a motion.

Motion: Dustin Betz motioned to approve the agenda as presented during the meeting (Attachment 1 - 1ei. MDWG Meeting Agenda 2018050910.docx). Jerad Ethridge seconded the motion. The motion passed unanimously.

-- Agenda Item 1f(i) – April 5th, 2018 Meeting Minutes Review (Action Item):
Nate Morris asked the group if they had any modifications or issues with the posted meeting minutes. The group did not voice any meeting minutes’ modifications or issues.

Nate opened the floor to entertain a motion.

Motion: Gimod Olapurayll motioned to approve the meeting minutes as presented during the meeting (Attachment 2 – 1fi. MDWG Minutes April 5, 2018-04232018.docx). Jason Shook seconded the motion. The motion passed with no opposed and one abstained. Dustin Betz abstained because he was not present at the April 5th meeting.
Agenda Item 2 – MOPC Recap for MDWG Charter:

Sunny Raheem presented highlights of the charter discussion during the April MOPC call. Nate Morris briefly discussed what transpired at the MOPC and the discussion about the MDWG considering more membership. Nate then asked the group if they had any thoughts on the structure of membership of the MDWG. Joe Fultz recalled that during MOPC discussion it was mentioned that any person submitting data to MOD should have a seat at the MDWG.

The group discussed several different possible suggested requirements and qualification for membership such as SPP members registered as Transmission Providers (TPs), active data submitter with suspension of voting for non-active participates, and tying vote to the company rather than the individual.

Moses Rotich mentioned to keep in mind that the SPP bylaws state that except for a full representational group (MOPC), all appointments to SPP organizational groups will be on an individual basis and not by corporate entity. Anthony Cook commented that it be beneficial to find out which companies actually want a seat at the MDWG. Anthony mentioned when he was the MDWG secretary, he received very few nominations. Some of the nominations for individuals were not completely aware of the effort.

Action Item: Nate asked the group including non-voting members to come with possible ideas on the framework of membership and any concerns at the next MDWG call.

Action Item: SPP-Staff to send out a survey to TPs to gauge interest for a voting seat at the MDWG and bring this information to the next MDWG meeting.

Agenda Item 3 – 2018 MDWG Dynamics Model Build Update:

Michael Odom gave an update on the 2018 series MDWG dynamic models. Michael stated that the next milestone is 05/28/2018 for initialization messages. Michael stated that the build is slightly behind on schedule but SPP is working on mitigation plans to get it back on schedule. Eddie Watson reiterated that SPP is currently in mitigation status to get the schedule up-to-date and is looking to get more experience to get it caught up.

Agenda Item 4 – 2018 Geomagnetic Disturbance (GMD) Model Update:

Scott Jordan presented an overview of the objective of Geomagnetic Disturbance (GMD) Models. Scott provided a NERC TPL-007-1 standard and requirements summary. Scott provide an overview of the Transmission Planning Task Force’s (TPLTF) takeaways for the TPL-007-1 standards. Scott provided an update on the Geomagnetically Induced Currents (GIC) data gathering, model build, and future milestone dates.

Action Item: SPP-Staff GMD Presentation after the meeting (Attachment 3 - 4. GMD_MDWG_Update.pdf).
Agenda Item 5 – Acceptable Dynamic Model Discussion:
Michael Odom presented the Acceptable Dynamic Model Discussion. Michael communicate the concern around user-written dynamic models that are not documented well. After communicating concerns, Michael initiated the acceptable dynamic model list discussion with the group.

Reené Miranda mentioned that MOD-032 states that user written models are required to provide the documentation associated with the models.

Joe Fultz stated concerns about GRDA and possibly other members validating models to meet MOD-026/27 requirements after reading some NERC white papers. Sunny Raheem stated that it might be a good idea to have the list vetted by TWG since it could have possible affects TPL and Generator Interconnection studies.

The group also discussed who the responsible entity is for providing the acceptable list to Generator Owners. The group mentioned that SPP, as the PC, should be involved throughout the process per MOD-026/27.

Action Item: MDWG Manual Task Force will review criteria that other regions are using and construct some language for the manual.

Action Item: Nate Morris to take this topic to the May TWG meeting next week and provide an update at the next MDWG meeting.

Action Item: SPP-Staff to send out NERC acceptable dynamic model list

Agenda Item 6 – Untimely Submission Survey Results & Recommendations:
Sunny Raheem presented the results and recommendations from the Untimely Submission Survey. The group mentioned it is important to know when data submitters receive data internally and can submit to SPP. It is also important to understand how much the data is changing from year to year. Some members mentioned they receive their forecasts around September/October timeframe but it is a big internal effort to process that data before it is ready for submission to SPP but the current schedules are very constrained.

Nate Morris asked the group for their thoughts on additional automation checks. The group mentioned automation for members to check their loads in the MOD base case before actually submitting a profile or project update in MOD.

Action Item: SPP-Staff to find out if members can build out of MOD so that they can make sure updates applied correctly before SPP actually builds out of MOD.

Action Item: SPP-Staff to follow up to see if members can use SPP DocuCode script externally.

Action Item: SPP-Staff to identify if producing a monthly base case for all entities starting in May or June is achieve and would not require significant additional effort.

Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.
Agenda Item 7 – MOD Base Profile Discussion:
Moses Rotich presented the MOD Base Profile Discussion. Moses briefly discussed the issue that some data submitters have with static device control profiles from the 2018 model series. Moses mentioned some data submitters would like to request the removal of these items from the base profiles and allow some entities the opportunity to make those type changes using MOD projects rather than device control profiles. The group mentioned to address this discussion offline as required by the interested data submitters.

Agenda Item 8 – 2019 MDWG Powerflow/Short Circuit Model Build:
- Agenda Item 8a – PSS®E and MOD Version:
Sunny Raheem communicate PSS®E v33.11 is compatible with the associated MMWG build and SPP-Staff plans to keep the same version of MOD as the 2018 MDWG model built. Nate Morris asked the group if anyone had any concerns pertaining to the PSS®E or MOD version. The group did not voice concerns regarding this topic.

- Agenda Item 8b – Schedule (Approval Item*):
Sunny Raheem presented the two staff developed schedule options to the group for the upcoming 2019 MDWG/2020ITP model build. Sunny mentioned the key differences between the two schedules and the differences between the proposed 2019 MDWG/2020 ITP schedules compared to the previous 2018 MDWG/ 2019 ITP model build schedule. Eddie Watson communicated the need for possible improvements in the model build to align with the different ITP and Economic model milestones.

Nate Morris asked the group including Transmission Provides, Planning Coordinators, and MDWG members, for a straw poll on which of the two options the group is leaning towards. The straw poll results showed the group heavily favoring Option 2 with the January 11th lock down date for final data submission. The group further discussed the best placement for the face-to-face meeting during the model build schedule. The group also discussed at length the need for solved initial models in the earlier passes. Staff communicated the requirement for additional time for developing preliminary solved models. The group agreed to allocate more SPP-Staff time in Pass 0 and 1 for developing preliminary solved models. After discussion and review from the group, SPP-staff updated Option 2 with the group discussed changes implemented. The updated Option 2 schedule was presented to the group.

Nate opened the floor to entertain a motion for approval of the updated Option 2 2019 MDWG/2020ITP model build schedule.

Motion: Jerad Ethridge motioned to approve the Option 2 2019 MDWG model build schedule as edited during the meeting. Derek Brown seconded the motion. The motion passed unanimously. (Attachment 4 – 8b. 2019 MDWG Schedule Draft.pdf).
- Agenda Item 8c – Model Selections (Approval Item*)
Sunny Raheem presented the current Model Selections for MMWG, MDWG, and internal SPP study requirements. The group discussed at length the need for various models. Many in the group voiced concerns of various models and the continual need for them. The group reviewed the number of models in efforts of reducing the number of models or seasonal data submission. The group requested additional follow up from SPP-Staff to gather justification from SPP internal groups requiring particular seasonal models that are not required for MDWG or MMWG. Additionally, the group requested staff to compare some models from the 2018 build to review how relatively close some of the similar seasonal models are for generation and load forecasts. Nate and SPP-Staff communicated the importance of each stakeholder discussing the number of models and requirements with their TWG and ESWG representatives.

Action Item: SPP-Staff to compare some models from the 2018 series to and bring the results as informational material to the next MDWG meeting i.e., load, gen, topology

Action Item: Members to discuss the model list with their TWG and ESWG representatives

Action Item: SPP-Staff to compare some models from the 2018 series to and bring the results as informational material to the next MDWG meeting i.e., load, gen, topology

- Agenda Item 8d – Onboarding (Modeling process and MOD) Training:
Nate asked the group if there was interest in MOD and model building on boarding. The group expressed interest in additional training.

Action Item: SPP-Staff to send out survey to identify time for MOD training in June or July. SPP-Staff to work on developing on-boarding material for model building process.

Agenda Item 9 – MDWG Manual:
- Agenda Item 9a – Manual Task Force Update:
Michael Odom provided a recap of recent activity from the MDWG manual task force. Michael provide a summary of manual language changes.
- Agenda Item 9b – Language Approval (Approval Item*):
 Michael Odom presented the revisions to the accountability section in the MDWG manual.

 After group discussion, Nate Morris opened the floor to entertain a motion for the accountability section language changes.

 Motion: Jerad Ethridge made the motion approve the scope of applicability and accountability section as presented. Jason Shook seconded it. The motion passed unanimously.

 Michael Odom presented the revisions to the load section in the MDWG manual. The group discussed concerns for normal load growth situations. The group requested to modify the language as presented to account for the concerns raised during the meeting.

 Motion: Alex Mucha made the motion to approve the attachment AQ language as modified on the screen. Derek Brown seconded. The motion passed unanimously.

 Michael Odom presented the revisions to the sequence data section in the MDWG manual. The group discussed if situation occurred when negative and positive sequence are different. Many in the meeting agreed that there was no need to add negative sequence data in the redline changes.

 Motion: Jerad Ethridge made the motion to approve the changes presented in section C, PTI PSSE Short circuit format. Holli Krizek seconded. John Boshears voted no. The motion passed.

 Action Item: Nate Morris asked that John Boshears provide the reason for his no vote to SPP-Staff

 Action Item: MDWG manual TF to review language adding negative sequence data to the branch section.

- Agenda Item 9c – Power Flow, Dynamics, Short Circuit Task Force Discussion:
 Tabled for the next meeting

Agenda Item 10 – 2018 Series ITP to MMWG Conversion Discussion:
 Tabled for the next meeting

Agenda Item 11 – 2019 MDWG Models dispatched by SPP Discussion:
 Tabled for the next meeting

Agenda Item 12 – Engineering Data Submission Tool (EDST) Status:
 Sunny Raheem briefly provided a status update for the Engineering Data Submission Tool. Sunny mentioned the milestone dates are included in the meeting background material for reference.
Agenda Item 13 – Administrative Items:

- Agenda Item 13a – Summary of Action Items:
 - MDWG to identify draft framework of membership
 - SPP-Staff to send out a survey for voting membership
 - SPP-Staff to send out GMD Presentation
 - MDWG Manual Task Force manual language changes
 - Nate Morris to take acceptable dynamic model list discussion to TWG
 - SPP-Staff to send out NERC acceptable dynamic model list
 - SPP-Staff research MOD build out capability for data submitters
 - SPP-Staff to follow up on external SPP DocuCode script
 - SPP-Staff to identify if producing a monthly base case
 - SPP-Staff to compare similar 2018 seasonal models
 - SPP-Staff to send out survey to identify time for MOD training in June
 - SPP-Staff to work on developing on-boarding material
 - Nate asked that John Boshears provide the reason for his no vote to SPP-Staff
 - MDWG manual TF to review language adding negative sequence data to the branch section.

- Agenda Item 13b – Future Meetings:
 Nate Morris asked Sunny Raheem to provide a recap of the upcoming future meetings. Sunny mentioned the upcoming June MDWG conference call. Sunny requested to extend the June 7th meeting from a duration of 1.5 hours to 3 hours. The group did not voice any concerns of the meeting duration change.

- Agenda Item 13c – Adjourn Meeting:
 With no further discussion, Nate solicited a motion to adjourn the meeting.

 Motion: Alex Mucha motioned to adjourn the meeting. Joe Fultz seconded it. The motion passed unanimously.

 The meeting was adjourned at 12:03PM (MDT).

Respectfully submitted,
Sunny Raheem
SPP Staff Secretary
Southwest Power Pool, Inc.
Model Development Working Group
Conference Call
April 5th: 10:30 A.M. – 12:00 P.M. (CDT)

• M I N U T E S •

Agenda Item 1 – Administrative Items:

– Agenda Item 1a – Call to Order:
The meeting was called to order at approximately 10:33 a.m and the SPP Antitrust statement was read to the group.

– Agenda Item 1b,c – Attendance and Proxies:
The following MDWG members and guests attended.

MDWG Members present:

<table>
<thead>
<tr>
<th>MDWG Member</th>
<th>Present</th>
<th>Proxy</th>
<th>Present</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nate Morris</td>
<td>YES</td>
<td></td>
<td></td>
<td>Empire District Electric Company</td>
</tr>
<tr>
<td>Derek Brown</td>
<td>YES</td>
<td></td>
<td></td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Dustin Betz</td>
<td>NO</td>
<td>Jason Hofer</td>
<td>NO</td>
<td>Nebraska Public Power District</td>
</tr>
<tr>
<td>John Boshears</td>
<td>YES</td>
<td></td>
<td></td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jerad Ethridge</td>
<td>YES</td>
<td></td>
<td></td>
<td>Oklahoma Gas & Electric</td>
</tr>
<tr>
<td>Joe Fultz</td>
<td>YES</td>
<td></td>
<td></td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Wayne Haidle</td>
<td>YES</td>
<td></td>
<td></td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Holli Krizek</td>
<td>YES</td>
<td></td>
<td></td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Reené Miranda</td>
<td>YES</td>
<td></td>
<td></td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Alex Mucha</td>
<td>YES</td>
<td></td>
<td></td>
<td>Oklahoma Municipal Power Authority</td>
</tr>
<tr>
<td>Gimod Olapurayil</td>
<td>YES</td>
<td></td>
<td></td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Scott Schichtl</td>
<td>NO</td>
<td></td>
<td></td>
<td>Arkansas Electric Cooperative Company</td>
</tr>
<tr>
<td>Jason Shook</td>
<td>YES</td>
<td></td>
<td></td>
<td>GDS Associates</td>
</tr>
<tr>
<td>Liam Stringham</td>
<td>YES</td>
<td></td>
<td></td>
<td>Sunflower Electric Power Corporation</td>
</tr>
<tr>
<td>Sunny Raheem</td>
<td>YES</td>
<td></td>
<td></td>
<td>Southwest Power Pool, Inc.</td>
</tr>
</tbody>
</table>
Additional Guests present:

<table>
<thead>
<tr>
<th>Guests</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin Green</td>
<td>American Electric Power</td>
</tr>
<tr>
<td>Jeremy Severson</td>
<td>Basin Electric Power Cooperative</td>
</tr>
<tr>
<td>Ellis Lutz</td>
<td>Associated Electric Coop</td>
</tr>
<tr>
<td>Jeff Crites, Jerry Bradshaw</td>
<td>City Utilities of Springfield</td>
</tr>
<tr>
<td>Jordan Lamb</td>
<td>East River Electric</td>
</tr>
<tr>
<td>Mark Reinart</td>
<td>Golden Spread Electric Coop</td>
</tr>
<tr>
<td>Dona Parks</td>
<td>Grand River Dam Authority</td>
</tr>
<tr>
<td>Charles Shue</td>
<td>ITC Great Plains</td>
</tr>
<tr>
<td>Marc Moor, Ryan Baysinger, Lafayette</td>
<td>Kansas City Power & Light</td>
</tr>
<tr>
<td>Alan Burbach</td>
<td>Lincoln Electric System</td>
</tr>
<tr>
<td>Sam Zewdie</td>
<td>Midwest Reliability Organization</td>
</tr>
<tr>
<td>John Weber</td>
<td>Missouri River Energy Services</td>
</tr>
<tr>
<td>Armin Sehic, Bruce Doll</td>
<td>Municipal Energy Agency of Nebraska</td>
</tr>
<tr>
<td>Daryl Huslig, Hermes Arevalo, James Thomas</td>
<td>Oklahoma Gas & Electric Company</td>
</tr>
<tr>
<td>John Mayhan, Tom Mayhan</td>
<td>Omaha Public Power District</td>
</tr>
<tr>
<td>Dave Sargent, Scott Mijn</td>
<td>Southwest Power Administration</td>
</tr>
<tr>
<td>Aravind Chellappa, Frank Favela</td>
<td>Southwestern Public Service</td>
</tr>
<tr>
<td>Liam Stringham, Tanner New</td>
<td>Sunflower Electric Power Cooperative</td>
</tr>
<tr>
<td>Christopher Gilden</td>
<td>Tri-State Generation and Transmission</td>
</tr>
<tr>
<td>Jeremy Harris</td>
<td>Westar Energy</td>
</tr>
<tr>
<td>Chris Colson, Garrick Nelson, Josie Daggett</td>
<td>Western Area Power Administration</td>
</tr>
<tr>
<td>Shaun Golden</td>
<td>Western Farmers Electric Coop</td>
</tr>
</tbody>
</table>
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

Agenda Item 1d – Agenda Review (Action Item):
Nate Morris asked the group if they had any modifications to the agenda or issues with the posted material.

Reené Miranda requested adding an agenda discussion item for additional short circuit checks. Reené explained the need for a screening short circuit models prior to SPP presenting the models to MDWG for approval, to ensure the short circuit models have been tested and are study for use. Zack Bearden added to the discussion about adding another check for type 4 bus codes. Nate and the group recommended adding Short Circuit Model Validation Checklist as item 6.d. to the meeting agenda.

After discussion, Nate opened the floor to entertain a motion.

Motion: Derek Brown moves to approve the agenda as edited during the meeting (Attachment 1 - 1d. MDWG Meeting Agenda 20180405_Redline.docx). Alex Mucha seconded the motion. The motion passed unanimously.

Agenda Item 1e(i) – March 1st, 2018 Meeting Minutes Review (Action Item):
Nate Morris asked the group if they had any modifications to the agenda or issues with the posted material. The group identified a few typos in the March 1st meeting minutes and request to correct them. Sunny Raheem corrected the typos in redline format and presented the changes to the group.

After discussion, Nate opened the floor to entertain a motion.

Motion: Jerad Ethridge moves to approve to the meeting minutes as edited (Attachment 2 - 1ei. MDWG Minutes March 1, 2018_04052018_Redline.docx). Jason Shook seconded the motion. The motion passed unanimously.

Agenda Item 1e(ii) – March 9th, 2018 Meeting Minutes Review (Action Item):
Nate Morris asked the group if they had any modifications to the agenda or issues with the posted material. The group identified a few typos in the March 9th meeting minutes and requested to correct them. Sunny Raheem corrected the typos in redline format and presented the changes to the group.

After discussion, Nate opened the floor to entertain a motion.

Motion: Jason Shook moves to approve to the meeting minutes as edited (Attachment 3 - 1eii. MDWG Minutes March 9, 2018_04052018_Redline.docx). Derek Brown seconded the motion. The motion passed unanimously.
Agenda Item 2 – 2018 MDWG Dynamics Model Build Update:
Moe Shahriar provided the group an update for the 2018 MDWG dynamics model build. Moe mentioned SPP Staff is currently working on the master dynamic (dyr) file. Moe stated that he has accepted a position external to SPP and request data submitters to continue contacting Michael Odom for dynamic model information.

Derek Brown and group questioned the transition and timing for submitting updates particularly for MOD 26 & 27 testing. Eddie Watson mentioned SPP staff is working on a transition plan for Moe’s responsibilities currently and will update the group at the next MDWG meeting.

Nate Morris and the group thanked Moe for his time, support, and flexibility. The group stated that Moe worked well with the members. Eddie Watson communicated his support for Moe and farewell.

Agenda Item 3 – MDWG Manual Task Force Update (Action Item):
Michael Odom led the group in the MDWG Manual Task Force Update discussion. Michael presented the manual subsections A, B, and C. Chris Colson mentioned the language was previously presented in the fall of 2017. However, some edits were made since the last time the language was presented. The group reviewed the proposed redline language and provided feedback. The feedback and discussion included updating applicable references to “Good Utility Practice”, developing an understanding and updating consistent language for BES, Non-BES, and Tariff facilities, agreeing upon accurate references to MOD 032 Data Submitter/Owner, and vetting OATT references. Sunny Raheem updated the redline language in the manual based on discussion and agreement amongst members during the meeting (Attachment 4 - 3. SPP MDWG Model Development Procedure Manual Accountability Language_04052018_Redline.docx).

After a lengthy discussion, Nate Morris requested to table the discussion for the next future meeting. Nate reminded the group of the remaining agenda items and meeting time left.

The group mentioned they would like a reference to the modeling contacts.

AL: SPP Staff to send link to modeling contacts and meeting times. The modeling contacts are posted on GlobalScape at the following directory: Modeling (CEII, RSD) → MDWG Powerflow → SPP Modeling Contacts

Agenda Item 4 – Untimely Submission Survey Review:
Michael Odom presented the Untimely Submission Survey Presentation. Michael presented the high-level purpose and scope for the survey. Eddie Watson and Sunny Raheem mentioned the benefits of SPP Staff understanding the results of the survey to assistance in continual improvement and model build coordination to the group.

AL: SPP Staff to send out Untimely Submission Survey to data submitters. Completed 4/10/2018.
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

Agenda Item 5 – Preliminary 2019 MDWG Power flow/Short Circuit Model Build Schedule Update:
Sunny Raheem updated the group about the status of the 2019 MDWG/Short Circuit Model Build Schedule. Sunny mentioned SPP Staff has a preliminary schedule developed that is currently under review by SPP management for internal approval. Nate Morris requested a preview of the preliminary schedule if time allows during the Engineering Data Submission Tool (EDST) large group testing on April 25th. Nate also voiced his encouragement for data submitters to attend the EDST large group testing meeting on April 25th.

AL: SPP Staff to send out preliminary schedule

Agenda Item 6 – Misc.:

Agenda Item 6a – Siemens Aha Ideas:
Sunny Raheem briefly mentioned the purpose of Siemens Aha Ideas and the benefits. Sunny mentioned the Siemens Aha Ideas are typically driving by quantity of votes.

Agenda Item 6b – 2018 Series ITP to MMWG Conversion Update:
Sunny Raheem mentioned Moses Rotich is leading ITP to MMWG conversion effort. Sunny mentioned Moses has started working internally to follow up on feedback for the conversion effort with SPP planning staff and SPP Legal. SPP Legal mentioned concerns about implementing dispatch from ITP to MDWG models and if it is classified as resource specific information. The dispatch concern requires further information and investigation on how it would relate to the SPP Non-Disclosure Agreements (NDA).

Nate Morris asked when SPP Legal would have their recommendation on the legal concerns pertaining to the ITP to MMWG conversion. Anthony Cook mentioned it would be unlikely it would be before the 2019 MDWG model build starts. Nate requested SPP Staff come with a recommendation to the May Face-To-Face meeting for the conversion efforts. Anthony recommended the group to plan for business as usual for dispatching because of the short lead-time until the 2019 MWDG model build starts.

Agenda Item 6c – 2019 MDWG Models dispatched by SPP Update:
The group acknowledged similar concerns for the 2019 MDWG Models dispatched by SPP as Agenda Item 6b. The group asked staff to find out all pros and cons for using 2019 MDWG models dispatched by SPP Staff.

Agenda Item 6d – Short Circuit Model Validation Checklist
Nate Morris asked Reené Miranda to help lead the discussion for Short Circuit Model Validation Checklist based on concerns raised during the agenda review earlier in the meeting. Reené described the short circuit model approval. Reené mentioned SPS’s experience this year when running a fault with the short circuit models. Reené recommended the group might consider adding a screening fault analysis prior to approving the models as final. The screening fault analysis could include a balanced three phase and/or single phase to ground fault.
Antitrust: SPP strictly prohibits use of participation in SPP activities as a forum for engaging in practices or communications that violate the antitrust laws. Please avoid discussion of topics or behavior that would result in anti-competitive behavior, including but not limited to, agreements between or among competitors regarding prices, bid and offer practices, availability of service, product design, terms of sale, division of markets, allocation of customers or any other activity that might unreasonably restrain competition.

AGENDA ITEM 7 – Administrative Items:

- Agenda Item 7a – Summary of Action Items:
 AL: Send link to modeling contacts.
 AL: Send out Untimely Submission Survey.
 AL: Explore schedule possibilities for the fault run short circuit.
 AL: Send out preliminary schedule
 AL: Send out draft agenda for May face-to-face meeting.

- Agenda Item 7b – Future Meetings:
 Nate Morris asked Sunny Raheem to provide a recap of the upcoming future meetings. Sunny went over the future meetings schedules for the next few months including the EDST large group testing meeting. Sunny described how May 9-10th was selected as the face-to-face meeting dates based on member availability results from the Doodle poll. The group was asked to verify they are certain they would like to meet the week before TWG. Majority of the group confirmed May 9-10 was acceptable for their schedules.

 Chris Colson mentioned the May draft agenda has not been release to non-voting group members. Sunny Raheem stated he would take that action item and provide the draft may meeting agenda.

 AL: SPP Staff send out draft May agenda. The draft May agenda is posted with the April 5th meeting minutes (Attachment 5 - 1e. MDWG Meeting Agenda 2018050910.docx)

- Agenda Item 7c – Adjourn Meeting:
 With no further discussion, Nate solicited a motion to adjourn the meeting.

 Motion: Jason Shook motioned to adjourn the meeting. Jerad Ethridge seconded it. The motion passed unanimously.

 The meeting was adjourned at 12:10pm.

Respectfully submitted,
Sunny Raheem
SPP Staff Secretary
2019 MDWG /2020 ITP Seasonal Model Selection

MDWG

June 7, 2018
2019 Series MDWG/2020 ITP Models Legend
2019 Series MDWG/2020 ITP Models

<table>
<thead>
<tr>
<th>Year</th>
<th>Season</th>
<th>MDWG/MMWG</th>
<th>BR</th>
<th>BA</th>
<th>MDWG/MMWG</th>
<th>MDWG</th>
<th>ITP</th>
<th>Power Flow Model</th>
<th>Economic</th>
<th>Dynamic Models</th>
<th>Short Circuit Models</th>
<th>Short Circuit Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Spring</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Summer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Fall</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Winter</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Light Load</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Spring</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Fall</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Spring</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Fall</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Summer Shoulder</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Summer Shoulder</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALS
- 22
- 17
- 7
- 3
- 12
- 3
- 65
2019 Series Models – MOD Submission

<table>
<thead>
<tr>
<th>Year</th>
<th>Season</th>
<th>Load Forecast/Profile</th>
<th>Generation Profile</th>
<th>Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Spring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2019</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2019</td>
<td>Fall</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2019</td>
<td>Winter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2020</td>
<td>Light Load</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2020</td>
<td>Spring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2020</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2020</td>
<td>Fall</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2020</td>
<td>Winter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2021</td>
<td>Light Load</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2021</td>
<td>Spring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2021</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2021</td>
<td>Fall</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
<tr>
<td>2021</td>
<td>Winter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2022</td>
<td>Light Load</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2022</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2022</td>
<td>Winter</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
<tr>
<td>2024</td>
<td>Light Load</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2024</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2024</td>
<td>Summer Shoulder</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2024</td>
<td>Winter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2025</td>
<td>Light Load</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
<tr>
<td>2025</td>
<td>Summer</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
<tr>
<td>2025</td>
<td>Winter</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
<tr>
<td>2029</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2029</td>
<td>Winter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2030</td>
<td>Light Load</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
<tr>
<td>2030</td>
<td>Summer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2030</td>
<td>Winter</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
</tr>
</tbody>
</table>
ITP Manual Models

<table>
<thead>
<tr>
<th>Description</th>
<th>Year 2</th>
<th>Year 5</th>
<th>Year 10</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Reliability</td>
<td>Summer Winter Light Load Non-coincident Peak (3)</td>
<td>Summer Winter Light Load Non-coincident Peak (3)</td>
<td>Summer Winter Light Load Non-coincident Peak (3)</td>
<td>9</td>
</tr>
<tr>
<td>SPP BA (Economic)</td>
<td>One Future (1)</td>
<td>Each Future (1-3)</td>
<td>Each Future (1-3)</td>
<td>3-7</td>
</tr>
<tr>
<td>SPP BA Powerflow (Reliability)</td>
<td>One Future’s Peak and Off-Peak (2)</td>
<td>Each Futures’ Peak and Off-Peak (2-6)</td>
<td>Each Futures’ Peak and Off-Peak (2-6)</td>
<td>6-14</td>
</tr>
</tbody>
</table>
2019 Series MDWG/2020 ITP Models
MMWG Year 5 & 10 Alignment Look with ITP

<table>
<thead>
<tr>
<th>Year</th>
<th>Season</th>
<th>MDWG/MMWG</th>
<th>BR</th>
<th>BA</th>
<th>Economic</th>
<th>Dynamic Models</th>
<th>Short Circuit Models</th>
<th>Short Circuit Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Spring</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Fall</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Spring</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Fall</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Spring</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Fall</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Light Load</td>
<td>Removed</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Summer</td>
<td>Removed</td>
<td></td>
<td></td>
<td>X</td>
<td>Removed</td>
<td>Removed</td>
<td>Removed</td>
</tr>
<tr>
<td>2024</td>
<td>Summer Shoulder</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Winter</td>
<td>Removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>Summer</td>
<td>Removed</td>
<td></td>
<td></td>
<td>X</td>
<td>Removed</td>
<td>Removed</td>
<td>Removed</td>
</tr>
<tr>
<td>2029</td>
<td>Winter</td>
<td>Removed</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Light Load</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Summer</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>Winter</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALS: 22 17 7 3 12 3 1

Removed – denotes the previous seasonal model need

X – denotes the seasonal model need to align with ITP model
REVISION HISTORY

<table>
<thead>
<tr>
<th>DATE OR VERSION NUMBER</th>
<th>AUTHOR</th>
<th>CHANGE DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20MAR18</td>
<td>SPP Engineering Modeling</td>
<td>Initial Draft</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 1: INTRODUCTION

SUBSECTION A: PURPOSE
This manual establishes consistent modeling data requirements and reporting procedures for the development of Near-term and Long-term Transmission Planning Horizon models necessary to support analysis of the capability, reliability, and suitability of the SPP Transmission System. This section describes the applicability of entities, data owners, equipment, and data submitters to which this manual is germane.

The latest modeling data requirements and reporting procedures for the Planning Coordinator’s planning area, the “SPP MDWG Model Development Procedure Manual” jointly developed with each of the PC’s Transmission Planners, can be found on the SPP corporate website, www.spp.org. Additionally, the schedule for submission of data and the list of MDWG models (case types/scenarios) can also be found on the SPP corporate website, www.spp.org. The schedule for model development will also be sent with the first data request.

SUBSECTION B: SCOPE OF APPLICABILITY
It is well understood that transmission system modeling is a complex process predicated upon accurate and comprehensive data collection, review, and compilation. The SPP Model Development Working Group recognizes that to properly develop SPP Transmission System models, a constituency of responsible entities must collaborate in the model building effort. The transmission system subject to the SPP OATT including facilities 60kV and above must be accounted for in the SPP Transmission System models. Therefore, consistent with both the applicability of the NERC Data for Power System Modeling and Analysis Reliability Standard (MOD-032-1), and the provisions of the SPP Open Access Transmission Tariff (OATT), as well as good utility practice, this manual is applicable to the following NERC-registered and non-NERC-registered entities:

- Planning Coordinator;
- Balancing Authority;
- Transmission Service Provider;
- Transmission Planners;
- Transmission Owners of equipment within the SPP Planning Coordinator planning area and/or of equipment that is part of the SPP Transmission System;
- Owners or lessors of generating units, including Generator Owners, within the SPP Planning Coordinator planning area of Network Resource(s) designated by the SPP OATT and/or who have submitted a Generation Interconnection Request consistent with the SPP OATT.
- Resource Planners;

1 The NERC petition to remove the Load Serving Entity (LSE) registration was approved by 153 FERC ¶ 61,024, issued 15 October 2015. Therefore, the LSE registration is not discussed in this manual.

2 Capitalization is intended to include transmission-owning entities as defined in the NERC Glossary of Terms, as well as defined in the SPP OATT.
• Distribution Providers;
• Network Customers receiving Network Integration Transmission Service pursuant to the SPP OATT for designated Network Load and/or having arranged Point-To-Point Transmission Service for non-designated load;
• Native Load Customers of an SPP Transmission Owner;
• Transmission Customers pursuant to the SPP OATT.

It is noted that within the SPP Region, consistent with SPP Regional Transmission Organization (RTO) procedures and the SPP OATT, SPP serves as both a Balancing Authority and Transmission Service Provider for the SPP Transmission System.

Applicable Data Owners

A subset of the applicable entities annotated above comprise the Data Owners subject to the modeling data requirements and reporting procedures of this manual:

• Balancing Authority is responsible for submitting modeling data for aggregated existing and future load, integrated resource plans, and interchange obligations corresponding to the case conditions specified.
• Transmission Service Provider is responsible for submitting modeling data for their existing and future service commitments and obligations corresponding to the case conditions specified.
• Distribution Providers are responsible for submitting modeling data for their aggregated existing and future load, and interchange obligations corresponding to the case conditions specified.
• Transmission Owners are responsible for submitting modeling data for their existing and future Transmission or sub-transmission equipment that they own or maintain.
• Owners or lessors of generating units, including Generator Owners, are responsible for submitting modeling data for the existing and future generating equipment that they own or maintain.
• Resource Planners are responsible for submitting modeling data for their existing and future long-term resource adequacy plan(s) of specific customer load demand and energy requirements, corresponding to the case conditions specified.
• Network Customers are responsible for submitting modeling data for their existing and forecasted load, existing and forecasted load transactions, as well as existing and forecasted resource transactions corresponding to the case conditions specified.

3 For Eastern Interconnection equipment only. WAPA-UGPR independently operates the WAUW BA area within the Western Interconnection for equipment which is under the SPP OATT.
• Native Load Customers are responsible for submitting modeling data for their existing and forecasted load corresponding to the case conditions specified.

• Transmission Customers are responsible for submitting modeling data for their existing and forecasted transactions utilizing the SPP Transmission System, serving Network Load, or sales of Network Resources corresponding to the case conditions specified.
Applicable Data Submitters

The Data Owner shall be the Data Submitter, subject to the modeling data requirements and reporting procedures of this manual. A Data Submitter may be designated as the entity who takes responsibility for collating, formatting, and corresponding a Data Owner’s modeling data to SPP, as Planning Coordinator, in the approved format. A Data Submitter may be delegated only if the following are completed:

1. Data Submitter is designated in writing, showing mutual agreement by the Data Owner and Data Submitter.
2. Written notification is provided to SPP, as Planning Coordinator, regarding the specific data (e.g., load at bus X; generating unit Y; transmission branch Z) for which the Data Submitter will be responsible for.

Responsibility for the timely and accurate submission of Data Owner information to SPP, as Planning Coordinator, resides with the Data Owner. When a Data Owner delegates the submission of data to a Data Submitter, all communication that would otherwise be sent to the Data Owner alone, will be copied to the Data Submitter.

A Data Owner’s submitted data shall not modify another Data Owner’s data without explicit consent. Data Owners are encouraged to coordinate data submissions that may impact another Data Owner’s system.

*Commented [MO3]: SPP could have a workbook that lists the linkage of Data Owners and Data Submitters behind Globalscape for anyone that has the appropriate access to view. Could also be linked and listed in the EDST.

SPP could have distribution lists made to help ensure the appropriate Data Owners & Data Submitters are included in each communication. These lists could be linked to the EDST or Globalscape workbook.

Check with Moses on the workbooks
Entity Mapping Data Request
MDWG Data Coordination Workbook
Applicable Equipment

The modeling data required from Data Owners supports both the creation of the Electric Reliability Organization ("ERO"), or its designee, Interconnection-wide modeling cases, and the other Near-term and Long-term Transmission Planning Horizon cases required under the SPP OATT. Planned equipment, as differentiated from existing equipment, consists of equipment expected to be in service for the case conditions specified (e.g., month; year). Existing or planned equipment for which non-equivalenced modeling data shall be reported include, but are not limited to:

1. All Facilities comprising the BES.
2. All non-BES equipment 60 kV and above, subject to the SPP OATT.
3. All non-BES equipment that includes a normally-open point that, when closed, shifts load or creates a network path affecting the SPP Transmission System.
4. All non-BES equipment interconnecting within the SPP Transmission System or interconnecting the SPP Transmission System with non-SPP Transmission System(s), subject to the SPP OATT.
5. All non-BES equipment known to have a significant interaction with the BES, including reactive resources.
6. All direct-current connections within the SPP region or interconnecting to Transmission outside of the SPP region.
7. All Network Resource generation assets, subject to the SPP OATT, excluding Small Generating Facilities (< 2MW).
8. All Network Resource [pursuant to Item 7] generator step-up transformers and generator interconnection equipment. Generator interconnection equipment shall include, at a minimum, collector electrical equivalent representations, wherever applicable.
9. All Resources that are registered in the SPP Integrated Marketplace, including the transmission equipment necessary to delivery that Resource to the SPP Transmission System when the registered Resource is not directly connected to the SPP Transmission System.
10. All Network Load, subject to the SPP OATT.

Pursuant to the provisions of the OATT, equipment below the typical 100kV demarcation of the BES must be accounted for in the SPP Transmission System models.

As part of the MDWG model building process to support of the TPL-001-4 R1 model building requirement,

Equivalencing is a general technique that substitutes power system equipment with a simplified representation that closely approximates the characteristics and behavior of the actual equipment.

Footnotes:

6 Pursuant to the provisions of the OATT, equipment below the typical 100kV demarcation of the BES must be accounted for in the SPP Transmission System models.

7 As part of the MDWG model building process to support of the TPL-001-4 R1 model building requirement,

Commented [JH4]: What about Spare equipment since we have to consider it in the TPL assessment. Should it be included as well? Only applicable to BES facilities and the spare equipment strategy is captured by TPL data.

Commented [MOSR4]: Is this something that is added to/can be added to the EDST? If so it will be an enhancement and will come at a later date, not with the initial rollout. Sync the data request where appropriate, either MDWG manual or AEDRS.

Commented [CC6]: NEEDS WORDS.

From Renee: This includes modeling data from any radially served Transmission or sub-transmission from an SPP transmission point, which has the potential of creating a looped system to another SPP transmission point, via operation of a single current interrupting device.

Commented [M07R6]: Check with Renee, but Chris thinks this language has been updated to meet the...
11. All firm power purchases served by SPP Network Resource(s) and firm power sales sunk to SPP Network Load, including all firm power transactions that result in an area interchange.

Other information regarding equipment not specified above may be requested by SPP, as the Planning Coordinator, or by Transmission Planner(s) for modeling purposes, as necessary. Likewise, consistent with MOD-032-1 Requirement R3, the Planning Coordinator or Transmission Planner may request additional data or clarification regarding technical concerns with modeling data submitted. Written notification will typically be communicated through electronic means (e.g., email) to the Data Submitter and/or Data Owner and will include the technical concerns with the data submitted. Upon receipt of written notification, the Data Submitter and/or Data Owner shall respond to the notifying Transmission Planner or SPP, as the Planning Coordinator, with either updated data or an explanation with a technical basis for maintaining the current data in accordance with the reporting procedure schedule ("schedule") jointly developed by the Transmission Planners and Planning Coordinator.

Accountability

SPP, through coordination with the MDWG, cannot be effective at building timely and accurate models without Applicable Entity participation. All Applicable Entities are responsible for providing the data necessary to model their Applicable Equipment. Likewise, Applicable Entities are accountable for meeting specific deadlines and milestones established by the MDWG for model development, in the jointly developed schedule. The schedule will be made available to all Applicable Entities at the outset of each model-building period.

Clear and timely two-way communication between SPP, as Planning Coordinator, the Transmission Planners comprising the SPP PC, and Applicable Entities is vital to the successful compilation of modeling data, reporting, and ultimate production of accurate SPP Transmission System models. It is the responsibility of the Applicable Entity to communicate with SPP to establish the responsible contact for steady state, dynamic, and short circuit model data coordination.

Given that the MDWG relies upon Data Owner and Data Submitter input for the model building effort, the following are some of the established characteristics that support model-building best practices:

- Establishes a contact for model data coordination.
- Responds to model-building communications in a timely fashion.
- Data Owner begins coordinating data submittal well in advance of the initial model data submittal deadline.
- Submits model data ahead of established deadlines.
- Submit majority of model updates by initial model data submittal deadline.
- Ensures model data submitted is complete and accurate.
- Participates in MDWG conferences, calls and meetings.
- Performs a data integrity review of each model-building pass to identify and correct errors.
- Engages throughout the model-building process in a timely fashion.
- Keeps their respective managerial chain informed about model-building progress.
- Coordinates data submittions that may impact another Data Owner’s system.
Following each model-building cycle, SPP staff, in conjunction with MDWG members, will prepare a lessons-learned and modeling best practice recommendations assessment. [This assessment will focus on challenges experienced by the preceding model-building cycle, attempt to identify root causes, and suggest improvements for subsequent model-building cycles.

Commented [MO13]: Potentially add to the MDWG model build schedule. Survey add as well?

Formatted: Font: Cambria, 11 pt
MDWG experience has shown that some natural obstacles exist to achieving model-building best practices. The following cautionary situations are examples for the purpose of Data Owner and DataSubmitter awareness during the model-building process:

- Appropriate lead times. Data Owners may rely on other entities to provide data; therefore, Data Owners should consider lead times when requesting data from others (e.g., Data Owner entity X is the Market Participant and Network Load registrant who serves a municipal customer). Knowing that source data may be more difficult or slower to obtain, the Data Owner should act as early as possible so not to delay the submission of data until late in the model-building process.

- An early and complete submission of a Data Owner’s modeling data does not eliminate the need for the Data Owner to participate in all model-building passes. In many cases, model parameters that affect multiple Data Owners within a region (e.g., load, generation dispatch, and transactions) may change between model iterations. The aggregation of these changes can have a pronounced effect on the model data that Data Owners have submitted and emphasizes the need for checking/re-checking the integrity of a Data Owner’s model representations in each model iteration.

During each model iteration, an assessment of model-building progression and participation may be performed. Given that incomplete or late data submission has a tremendous impact upon the ability to meet the model-building schedule, any Data Owner who seeks to submit late data will be obligated to present before the MDWG about how proposed model changes will impact the models themselves, as well as impacts to the overall modeling schedule. The MDWG has the obligation to report its progress and achievement of model-building milestones to various SPP working groups/committees.

In cases where an Applicable Entity has not participated or otherwise supported MDWG efforts in good faith towards the achievement of published milestones, the MDWG may report non-participating entities to the TWG/MOPC.

12 The NERC petition to remove the Load Serving Entity (LSE) registration was approved by 153 FERC ¶ 61,024, issued 15 October 2015. Therefore, the LSE registration is not discussed in this manual.

13 As part of the MDWG model building process to support of the TPL-001-4-R1 model building requirement.
General Data Reporting Responsibilities

The SPP data reporting entities are responsible for the following categories of system modeling data:

1. Steady-State
2. Short Circuit
3. Dynamics

Steady-State models are developed for an annual series of SPP cases, including an annual series of ERAG MMWG cases. Specific models are prepared and modified for use in SPP designated studies as required by SPP Regional Tariff and Planning Criteria.

Short Circuit models are developed annually using a subset of the Reliability Steady-State models. All base MDWG steady-state models will include sequence data (including applicable mutual line impedance data) for the SPP footprint. The following 3 versions of short circuit models will be built:

1. MDWG steady-state base model
2. MDWG steady-state with PSS®E Classical assumptions
3. Maximum Fault case

The Base MDWG Short Circuit models are built by performing the following steps:

1. Extract the SPP RAW and SEQ data with ties from the final MDWG steady-state model
2. Extract the first tier company’s RAW and SEQ data without ties from the final SERC Short Circuit model built by the Short Circuit Database Working Group (SCDWG)
3. Merge the two data sets together.

The Classical assumptions MDWG Short Circuit Models are built by performing the following step:

1. Apply Classical assumptions to the Base MDWG Short Circuit model as described in the PSS®E Program Operation Manual

Maximum Fault cases are built by performing the following steps:

1. Place in-service (Apply a status of ’1’) all SPP planned and available existing generation and transmission facilities to the Base MDWG Short Circuit model
2. Apply Classical assumptions

The Dynamics Model is also updated annually with current generator unit information. Steady-State models are used in conjunction with dynamic data to run dynamic simulation.

System representatives should be responsive with good modeling techniques. SPP data models are
used by individual systems for studying future needs in developing construction forecasts. Not planning a major expenditure by one year due to inaccurate data could be very expensive, since funding allocation for major construction projects requires more time resources. In addition, ATC, megawatt-mile and incremental losses are currently being calculated with these Steady-State models. With the large amount of interconnection within SPP, the impact of one system on another must be recognized and respected. Therefore, each system should prepare data consistent with its most recent official system forecasts in all data submitted to SPP including Energy Information Agency (EIA-411) Data. It is also important that the models represent the expected operation of the SPP system consistent with this manual and Planning Criteria.

Entities in the SPP Planning Coordinator region that are not members of the SPP but required to submit data (i.e. IPPs, Municipalities) will submit data directly to the Transmission Owner or Balancing Authority in which their system resides. Upon review (i.e. data accuracy, quality) by the Transmission Owner or Balancing Authority the data will then be provided to the SPP during the annual MDWG case type update process. The data submitted will be in the standard PTI format as specified in the MDWG Model Development procedure manual. All non-SPP members that are responsible for submitting this data should directly coordinate with the Transmission Owner or Balancing Authority on timing for sending data, as well as any special requirements in data formatting.

In an effort to determine who is collecting/submitting data for whom, all NERC registered entities within the SPP PC footprint (MOD-032-1: applicable to BA, GO, LSE, RP, TO, TP, and TSP) shall fill out the data coordination workbook to notify SPP if data is being submitted directly to SPP or through some other entity(ies) on behalf of your company. Likewise, SPP shall be notified if your company is submitting data on behalf of another entity(ies).

Confidentiality and Proprietorship

The representation of future system elements in SPP data models is not an agreement to construct these elements when shown in the models or at any time. The configuration of each model system only reflects the necessary changes that the individual model system needs for maintaining reliable operation. The results of studies obtained through use of the data models developed by SPP will be the sole responsibility of the receiving party. The recipient of SPP data models must assure confidentiality and proprietorship.

Schedule

As with all schedules, the meeting of deadlines is most critical. All system representatives must familiarize themselves with the schedule well in advance of all deadlines. This will alleviate any problems with the timing of data submittal and data reviews. The schedule for model development will be sent with the first data request as well as posted on the SPP corporate website, www.spp.org.

Steady-State and Short Circuit Model Development

The MDWG Steady-State and Short Circuit models are developed using data gathered through the SPP database Model On Demand (MOD) in conjunction with the Data Submittal Workbook. MOD data is divided into three parts: a Base Case, Projects, and Profiles (Bus, Loads, Generation, and Device Control). Modeling updates for transmission system topology can be made by submitting a Project to MOD. Non-topological modeling updates that are season specific can be made by
submitting Profiles to MOD. Additional required data is submitted through the Data Submittal Workbook which is identified in the data preparation section of this manual.

SPP MDWG Steady-State and Short Circuit Models are published according to the approved schedule.

AC Contingency Analysis

SPP will perform AC Contingency Analysis on all models contained in the steady-state case type set. The purpose of this contingency analysis is to validate the models. Member updates for errors found due to contingency analysis are to be submitted during the next member data submission period per the latest MDWG model building schedule.

Dynamic Model Development

Introduction

The MDWG Dynamic Models include full MMWG cases and machine reduced cases. The initialized no-fault models can be solved with quarter-cycle and half-cycle time steps. The MDWG Dynamic model Update is used to support SPP reliability studies and ERAG MMWG Dynamic model requirements. It is important for all generating entities that interconnect to the SPP transmission to support the Regional Transmission Organization with current detailed dynamics data in the proper SPP model format. The current MDWG Dynamic Model Format is PSS®E dynamics DYRE and RAWD formats.

The Dynamics Model data includes:

1. Steady-State models
2. Dynamics model data in Siemens PTI PSS®E DYRE format
3. User written model source and object code (includes wind farms)
4. ERAG MMWG System Dynamics Database (SDDB)
5. SDDB data update worksheet

SPP MDWG Dynamic Models are published according to the schedule in Section 15 B.
SUBSECTION C: MODEL DEVELOPMENT

Data Preparation

The following section describes important items that must be followed in the development of a steady-state model in preparing the data for publishing new models or updating existing models.

1. The data listed in Attachment 1 of the NERC Standard MOD-032-1 located on the NERC website.
2. MOD data should be kept current for each pass during the MDWG model build.
3. The Data Submittal Workbook contains informational data as well as modeling data that Data Submitters shall keep current for each pass of the MDWG model build.
4. Transaction - Firm and non-firm reservations with other entities that shall be coordinated before submission to SPP (Reference appendix VIII for more information).
5. Generator Data - Required generator data that is not otherwise captured in the models.
6. SPP Modeling Assignments - Contains PSSE modeling area, owner, zone, and bus range information pertinent to SPP.
7. Load Mapping – Identify loads not served by native Control Areas.
8. Data Dictionary – List of all buses in the models that includes long names, voltage level, area, owner, and EIA plant codes.
9. Interregional Ties – PC to PC branch and transformer ties that shall be coordinated before submission to SPP.
10. Outages – Outages known during the annual model building process for buses, generators, branches, transformers, and shunts with a duration of at least six months shall be modeled. Data Submitters are responsible for annotating known outages to be modeled within the data submittal workbook, as well as ensuring that the known outages are correctly modeled in the appropriate season(s) when the known outage is scheduled. MOD projects shall be submitted with effective dates corresponding to the scheduled period of the known outages.

Table 1: Season Date Range and Cutoff Dates

<table>
<thead>
<tr>
<th>Season</th>
<th>Date Range</th>
<th>Cutoff (On or Before)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>April 1 – May 31</td>
<td>May 1</td>
</tr>
<tr>
<td>Light</td>
<td>April 1 – May 31</td>
<td>May 1</td>
</tr>
<tr>
<td>Summer</td>
<td>June 1 – September 30</td>
<td>August 1</td>
</tr>
<tr>
<td>Summer Shoulder</td>
<td>June 1 – September 30</td>
<td>August 1</td>
</tr>
<tr>
<td>Fall</td>
<td>October 1 – November 30</td>
<td>November 1</td>
</tr>
<tr>
<td>Winter</td>
<td>December 1 – March 31</td>
<td>February 1 (yyyy+1)*</td>
</tr>
</tbody>
</table>

*Example of Winter: 12/1/2017 – 3/31/2018, yyyy+1 = 2018

Steady-State and Short Circuit Data Format

PSS®E and MOD Users

The transmission modeling software approved by the SPP membership for performing planning and reliability studies is the Power Technologies Incorporated, Power System Simulator for Engineering (PSS®E) software. Data submitted for the building of the base SPP MDWG case types (models) needs to be in a format consistent with that used in PSS®E. The data shall be submitted via the SPP Models On Demand (MOD) Web Portal. Data submitted should be compatible with the MOD and PSS®E versions currently specified by SPP.

Non-PSS®E and Non-MOD Users

Section 4 – Periodic Model Updates
For those non-PSS®E users, load and generation profile data may be submitted via the Profile Submission form provided by SPP. SPP will aid with the submission of all other steady-state data in the correct PSS®E and MOD data formats. Any version changes will be discussed in the annual training provided by SPP.

Dynamic Data Format

PSS®E Users
Dynamics data needs to be submitted in the form of a flat text file or dyre file compatible with Siemens PTI PSS®E software. Dynre file submittals can be of changes to individual components from the existing dyre entries or of entire new representation of machines. Dynamic ready models are developed using the PSS®E software program. The data should be submitted via GlobalScape or email. Data submitted must be compatible with the PSS®E version currently specified by SPP.

Non-PSS®E Users
Dynamics data needs to be submitted in the form of a flat text file or dyre file compatible with Siemens PTI PSS®E software. Siemens PTI PSS®E Software contains dyre file models for most conventional machines, exciters, governors, SVCs, HVDC ties, wind resources, and solar resources. SPP Modeling staff will work with the responsible entity or its designee to translate operational test data into the appropriate dyre file format compatible with the PSS®E version currently specified by SPP.

The members are expected to contact the SPP Modeling Staff if there are any additional questions regarding the data format.

Responsible Entities

Data owners are responsible for providing the data necessary to model their assets to its Transmission Planner(s) and Planning Coordinator(s) as described in this document. Data owners and their respective data submission responsibilities are noted in the NERC standard MOD-032-1.

1. Generator Owners (GO) and Resource Planners (RP) are responsible for submitting modeling data for their existing and future generating facilities respectively.
2. Load Serving Entities (LSE) are responsible for submitting modeling data for their existing and future transmission facilities.

The Planning Coordinator or Transmission Planner can request other information necessary for modeling purposes from the BA, GO, LSE, TO, or TSP.

Typical Annual Models
The typical yearly models developed by the SPP MDWG, as identified within the NERC TPL reliability standards, encompass both near-term (years one through five) and longer-term (years six through ten) transmission planning models. The SPP models are defined in the Annual Models table above with those transmission planning models representing the near-term planning horizon consisting of the MDWG case types 1 through 13 and those representing the longer-term planning horizon consisting of the MDWG case types 14 through 16. The longer-term models may be incremented or additional models may be included as required to support ERAG MMWG.

The annual series of models are developed by SPP staff with input from the Model Development Working Group and the Transmission Working Group.

The schedule for submission to data and list of MDWG models (case types) can be found on the SPP corporate website, www.spp.org.

Transactions modeled in all base cases should be limited to expected firm schedules and should not include other transfers such as emergency power or opportunistic economy energy even though they may be provided for in contractual agreements. Due to FERC's ruling of Roll-over rights, Long Term Firm Transactions should be considered in the models that extend into the future even if the transaction has a stop date. For a transaction to be considered firm, the transaction must be confirmed at both the source end and the sink end. Southwest Power Pool will do its best to confirm delivery of transactions outside of the Pool boundaries.

Firm transmission load includes capacity dependent interruptible loads with buy through provisions. In other words load that may be interrupted if the source runs out of capacity should still be modeled if the load has a choice and opportunity to purchase power from another source. This firm transmission load should be modeled in all cases. The load modeling entity is responsible for scheduling the power from a source and updating the transaction worksheet (see Appendix VIII).

Load Forecast

Load forecasting methodologies vary throughout the electric industry. SPP depends on load forecasts from Data Submitters to apply to the planning models. These load forecast amounts are to be Non-Coincident to the SPP region, meaning that the hour that a Data Submitter’s system experiences a peak demand for a particular season, might not be the same hour that SPP, as a region, experiences a peak demand. In order to bring consistency and equivalency to the load forecast data submitted to SPP, load forecast data shall be based on a 50/50 forecast.

A 50/50 load forecast relates to a forecasted load amount having an equal probability of being either higher or lower than the amount forecasted. The forecasted load value is at the 50th percentile of the data distribution.

<table>
<thead>
<tr>
<th>Season</th>
<th>Season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Spring Peak</td>
<td>Annual + 1 Summer Peak</td>
</tr>
<tr>
<td>Annual Summer Shoulder</td>
<td>Annual + 1 Fall Peak</td>
</tr>
<tr>
<td>Annual Summer Peak</td>
<td>Annual + 1 Winter Peak</td>
</tr>
<tr>
<td>Annual Fall Peak</td>
<td>Annual + 2 Summer Peak</td>
</tr>
<tr>
<td>Annual Winter Peak</td>
<td>Annual + 2 Winter Peak</td>
</tr>
<tr>
<td>Annual + 1 April Minimum</td>
<td>Annual + 6 Summer Peak</td>
</tr>
<tr>
<td>Annual + 1 Spring Peak</td>
<td>Annual + 6 Winter Peak</td>
</tr>
<tr>
<td>Annual + 1 Summer Shoulder</td>
<td>Annual + 10 Summer Peak</td>
</tr>
</tbody>
</table>
percentile of a normal or similarly shaped distribution curve and is typically discussed in terms of exceedance such that there is a 50% probability that the load forecast will be exceeded due to abnormal weather.

Some studies may require load forecasts other than a 50/50 load forecast and may be requested for such special studies. For example, a 90/10 load forecast has a 10% probability that the load forecast will be exceeded, which means the load forecast amount is higher than a 50/50 load forecast amount and would be considered atypical for general SPP transmission planning purposes.

There are various methods used to develop such forecasts and the forecasts are dependent upon many factors such as historical load values, temperature, humidity, economic forecasts, time of day, day of week, holidays, special events, and load uncertainty. Other factors, some of which are controllable, also impact the amount of forecasted load. Controllable Demand Side Management (DSM) and Distributed Energy Resources (DERs) are such factors.

Demand Side Management consists of activities or programs that an entity invokes to achieve a reduction in Demand. DSM consists of controllable and non-controllable systems. Load forecasts shall not be reduced for application of controllable DSM. There is control over whether or not the load will be shed by an operator or end-user and therefore cannot be guaranteed that the load will be reduced during peak hours. Load forecasts should be reduced for application of non-controllable DSM. This load has a high probability of being shed during peak hours without manual intervention. Distributed Energy Resources are power resources on the distribution system that can be aggregated together to provide power to meet Demand. For purposes of transmission planning, it is recommended that Distributed Energy Resources should not be applied to a Data Submitter’s load forecast amount for incorporation into the SPP planning models.

When it becomes necessary or desirable to make changes in delivery point facilities, to upgrade, retire, replace, or establish a new delivery point, including metering or other facilities at such location, the provisions set forth in Attachment A0 of the SPP Open Access Transmission Tariff (OATT) shall apply. Loads that have completed the Attachment A0 process or any other applicable SPP process, and have a signed Interconnection Agreement (IA), or are in the process of finalizing an IA should be included in the Data Submitter’s load forecast. SPP will reject any MOD projects or PSSE ideas that attempt to add, delete, or modify delivery points that have not been studied either through the Attachment A0 or any other applicable SPP process. Data Submitters are required to appropriately tag MOD load projects in MOD.

Summary of Data Submitter’s load forecast data comprisal:

1. Non-coincident to the SPP region
2. 50/50 load forecast
3. Load forecast amount includes non-controllable Demand Side Management
4. Load forecast amount excludes controllable Demand Side Management
5. Load forecast amount excludes Distributed Energy Resources (recommended)

Seasonal peak models developed by SPP include: Summer Peak, Winter Peak, Spring Peak, and Fall Peak. These four seasonal models are built to represent the expected coincident seasonal peak based on each Data Owner/Data Submitter system peak load. Data Owner/Data Submitter peak load may not be coincident to the SPP Balancing Authority coincident peak.

In addition to the seasonal peak models, SPP develops two off-peak models. They include: a Light Load condition and a Summer Shoulder condition.

The Light Load model is developed with the intent to capture a Data Owner/Data Submitter system minimum load during the spring timeframe.

The Summer Shoulder model, also known as the seasonal on-peak average model is defined to be 70% - 85% of the total Summer Peak load level depending on the Data Owner/Data Submitter system.

Spring Peak (G): April 1st through May 31st
Summer Peak (S): June 1st through September 30th
Fall Peak (F): October 1st through November 30th
Winter Peak (W): December 1st through March 31st
Light Load (L): April 1st through May 31st
Shoulder (SH): 70% - 85% of Summer Peak model

Data Owners of load that is pseudo-tied into SPP shall submit load forecasts to both SPP and the entity in which the load is embedded. Owners of load that is pseudo-tied out of SPP should submit load forecasts to the entity in which the load is embedded.

External load is load not affiliated with load forecasts submitted by SPP Data Submitters to SPP for planning model building purposes.

*Need to capture the coordination of External load modeling.

Area Summary Report

The Area Summary Report is an important part of data preparation and should be the initial step of the update process. This report, though not part of the steady-state input forms, is an important part of the data coordination process. As such, the report should be distributed to all appropriate systems at least one week before the initial update data is due at the SPP Office. The standard area abbreviations listed in Section 6-B should be used on the area summary report and in the steady-state input data of area interchange and transactions. The following sequence of steps is to be used in completing this report:

1. The system name and area number, along with the name and phone number of the person that prepared the report, should be entered at the top of the form in the appropriate location.
2. The area slack bus and bus number. The area slack bus is to adjust for individual system losses only. It is not necessary for the area slack bus to be used for area load control in actual operation. Generation dispatch should be made to prevent the area slack bus from going to negative power output or power output above the stated rating of the unit when accounting for area losses. It is best that the area slack bus not represent a base load unit.
The estimated slack bus generation should also be entered (Item 7). There should be room left on the slack bus for generation movement up & down.

3. For consistency, it is important that each system continue using a particular area slack bus rather than choosing a different bus from year-to-year, unless a specific reason exists to justify such a change. There is a new row on the Area Summary Sheet to identify the slack bus. To aid in solution time of the cases, the area slack bus should be located on a relatively strong portion of the system.

4. The case year and season should be entered in the appropriate locations in chronological order.

5. The current system official load forecast should be entered as net load (Item 6).

6. The estimated losses should be entered (Item 5). The reference cases can be used as a starting point to estimate system losses.

7. Load equals net load minus estimated losses (Item 4).

8. Purchases and sales should be entered (Item 2). These values must be coordinated with the parties involved in the interchange transaction prior to data preparation. The algebraic sum of these transactions should be equal to the total area interchange.

9. Net power (Item 3) must equal net load (Item 6). Generation (Item 1) is equal to the net power plus interchange.

Tie Line Coordination

Each SPP system will receive a tie-line data comparison summary for the initial base case and after the final models are published. The member must coordinate with its neighbors on the tie line representation in the models being developed. This coordination should consist of:

1. Agreement on which bus is to be metered for area loss accounting.
2. The in-service and out-of-service dates, if applicable.
3. Tie line characteristics and ratings
4. System responsible for supplying the update data.

SPP Member tie data (Intra-SPP) is maintained in a MOD Project file. The majority owner of the tie is responsible for maintaining the tie’s steady-state, sequence, and ratings data.

SPP tie data with external entities (Inter-PC) is maintained in the MMWG PC tie line list. Entities must submit changes using the latest list, which will be posted with the latest case set. Changes are to be highlighted in order for SPP Staff to easily discern the submitted changes. The file name shall contain the company name of which is submitting the change. There will be other lower voltage SPP ties which are not listed in the NERC list. They will be checked using the SPP tie line reports.

Line and Transformer Data

Additions to the system tend to move from year-to-year based on changing load growth forecasts and budget requirements. As a result, future lines and transformers may move through several future cases. Line and Transformer Data is contained in MOD Projects and phases. The Project Type, Status, and Phase Effective Date determine if the data will be included in a particular model. The line and transformer data formats are found in Section 5.

The following steps should be considered when preparing line and transformer data:

1. The device code (Bus, Branch, Transformer) specifies what data is being added to the base...
The action code (Add, Modify, Delete) specifies the action to be taken with the Project data. Specifying the deletion of a bus will require a similar record to delete all associated or connected devices with the bus (lines, generators, loads, transformers, etc.) from the base case.

2. The “from bus,” “to bus,” and circuit number identify the line or transformer. The order in which bus numbers are entered is important for tie lines to identify which bus is metered for loss accounting in some data formats. The “from bus” is assumed to be the metered end (unless the “to bus” is entered with a negative) and the “to bus” area will collect loss responsibility. For transformers, this order is also important in all formats because it specifies to which bus the Load Tap Changer (LTC) will attempt to maintain voltage and/or which bus is tapped. The code U in the branch data allows the user to select proper metered and tapped side by always entering the tapped side as the “from bus” or first bus number after the change code. The “from bus” is the metered end unless the “to bus” or second bus number is a negative number. Remember to include the circuit identifier.

3. The positive, zero, and negative sequence branch impedance data shall be provided on a 100 MVA base (per unit value). The smallest allowable reactance is 0.00011 P.U. on a 100 MVA base. Reactance values less than minimum will cause the steady-state program to treat the line as a zero impedance line to reduce solution time.

4. The positive, zero, and negative sequence line charging data (conductance and susceptance) shall be provided on a 100 MVA base (per unit value) as applicable. A default value of zero will be assumed if no data is provided. Line charging data will be divided in the appropriate units depending on the specific format being utilized. Accuracy is needed to ensure a proper voltage profile in the model.

5. Each SPP member shall rate transmission circuits in accordance with the SPP Planning Criteria (Section 7.2). This criterion calls for each member to compute, at a minimum, summer and winter seasonal ratings for each circuit element. Each Base Case (Network) and Project branch, two-winding and three-winding transformer must have a specified rate A (normal) and rate B (long-term emergency) for spring, summer, fall, and winter. The ratings data format is in the MOD Procedure Manual.

6. The transformer tap and tap limits shall be specified. The use of LTC transformers should be kept to a minimum to help reduce the case solution time. Using LTC transformers for local area voltage control where no such transformer exists should be avoided. In general, regulating transformers should not be located at a bus with a regulating generator or other voltage regulating device; however, there may be exceptions based on current system topology and operating conditions.

7. Circuit mileage should be entered in the appropriate line length field of branch data. Ownership data for the line should also be entered in the appropriate fields of branch data. This mileage and ownership data will be used to validate and calculate Megawatt-mile for the SPP Regional Tariff. Circuit mileages should be coordinated on all jointly owned lines. Invalid line lengths result in inaccurate revenue allocations.

8. All NERC flowgates must be included in the data submitted by each region to the MMWG such that those flowgates are not equivalenced in the steady-state models. A flowgate is a selected transmission element or group of elements acting as proxy for the transmission network representing potential thermal, voltage stability, rotor angle stability, and contractual system constraints to power transfer. Enough detail should be added to model...
the flowgate accurately.

9. Transformer connection codes and transformer winding angle (phase displacement) shall be provided. The connection code data incorporates concepts of the transformer core type, the vector group (phase differences between windings, standardized with clock notation indicating phase displacement), and physical conductor orientation. The transformer winding angle further specifies the inherent phase shift between transformer windings based upon configuration (vector group). Data Owners are reminded that changes to connection codes do not automatically alter the modeled phase displacement used for positive sequence load flow calculations.

Bus Data

For all SPP steady-state models, systems will model buses within their SPP allocated bus range (see Section 6-B). For the sake of consistency, the bus names and numbers should remain constant from case to case and year to year. All bus shunts will be modeled as switched shunt. The Switch Shunt may be locked. Any changes to bus names or numbers will be documented on the SPP Expanded bus name list. This will include renumbering buses as well as adding new or removing old buses from the models. When a change in bus voltage occurs, a new bus number will be given to the new higher voltage bus. This enables SPP to track when the old bus voltage changes. All interregional tie bus names should conform to the entries in the Master Tie Line Database as approved by the Regional MMWG Coordinators. All tie line bus names and numbers should be standard and unique within each area in all models in a case series. Changes in tie line bus names and numbers from one series to the next must be kept to a minimum to reduce changes in computer support programs. Unique generator bus names, base voltages, and unit id combinations should be consistent from case to case within a model series. The SPP Expanded bus name list can be used as a quick reference for new names. This will help ensure that the SPP bus names do not conflict with ERAG MMWG Standards.

The following steps describe options and data for most bus data formats:

1. The device code and the change code determine describes what action(s) are taken with the data supplied (addition, deletion, modification, etc...).

NOTE: When a bus is deleted or removed from service, all associated network devices (lines, transformers, loads, generators, etc.) must also be deleted or removed from the steady-state model within the Project.

2. As previously mentioned, the bus names and numbers should remain constant unless there is a particular reason for changing them. This will aid the consistency of the models developed. Bus names may be up to 12 characters with the first character, preferably, alphabetic rather than numeric. The name should be left justified. The eighth character field of the bus name should be the SPP voltage code described as follows:

 1 - Below 69 kV
 4 - 138 kV
 7 - 345 kV

Reference PSS/E Program Operation Manual section: Two Winding Transformer Zero Sequence Network Diagrams and Connection Codes or Three Winding Transformer Zero Sequence Network Diagrams and Connection Codes
The ninth through twelfth character fields of the bus name are reserved for the base kV designation (right justified). As associated with the voltage code, the generally used kV values are: 69.0, 115, 138, 161, 230, 345, 500 and 765.

3. For generator regulated buses, a desired voltage magnitude will be given. Generator buses should be modeled with operating characteristics as close to actual as possible. Generator ratings should also be specified for each generation bus (whether on or off-line) as described in SPP Planning Criteria Section 7.1. Generators shall model the gross output of the generating facility and explicitly model the station service auxiliary load. The practice of using generator for voltage support only (i.e. no real power output), should be avoided unless a synchronous condenser or static var controller physically exists on that bus or nearby in the system. When a generator is modeled offline (status 0), the MW (PGEN) and MVAR (QGEN) fields should be zeroed. Regulating transformers should not be located at a bus with a controlling generator or regulating shunt device.

4. Bus loads should be specified with the real and reactive values provided as a pair in all entries. The load should be modeled to reflect the expected in-service/out-of-service status.

5. When scaling area load, it is important to consider the reactive power as well as real power. This is particularly true when referencing a case of a different season. Realistic reactive load representation has a major effect on the overall case voltages. Reactive requirements are different for the various season models.

6. Capacitors, reactors, and SVCs represented in the models should be consistent with actual seasonal operation. These devices should be used in future cases calling for local area voltage support, rather than falsely regulating a bus. Attention should be given to these installations in cases that are referencing a different season model. Tertiary reactors should be modeled on the low voltage bus of transformers if the tertiary is not modeled explicitly.

Load Data

Load data is maintained in MOD via a profile file which is applied to the model. Profiles, Loads can belong to an Area that is not the same as the Bus Area. Refer to Section 5-A-3 for load data formats. The default solution technique will solve the case with Tie Lines and Loads. The Tie Lines and Loads solution option assumes that the Loads Area generation serves the load.

The Non-Scalable Loads will be identified in the Non-Scalable Load worksheet of the Data Submittal Workbook. This allows model builders to modify models without changing the loads that are constant.
Loads that are owned by municipal utilities should be modeled with an identifier in front of the number (i.e. Rayburn County load one should have the ID “R1”). These loads should be maintained in the Load Mapping worksheet of the Data Submittal Workbook.

Generator Data

Check Generator MW and Mvar output to ensure the unit is within the PMAX, PMIN, QMAX, QMIN, and Mbase limits per testing requirements in SPP Planning Criteria 7.1.1. Generator MW shall be set to “gross” level with auxiliary load modeled explicitly. Omax and Omar values in the models should be based on unit test data. Intermittent resources (e.g., wind and run-of-river hydro) should not normally be dispatched beyond their net capability as established by SPP Planning Criteria 7.1 for the summer and shoulder cases. Energy storage (pumped hydro, battery, flywheel, etc.) shall be modeled with the generator rated capabilities and a dispatch amount (Pgen) no greater than the rated output that can be sustained continuously for a minimum of one (1) hour. Ensure accurate values of ZR and ZX. This data is not needed in normal steady-state and equivalent construction work, but is required for switching studies, fault analysis and dynamic simulation. For dynamic simulation, this complex impedance must be set equal to the sub unsaturated transient impedance for those generators modeled by sub transient level machine models, and to transient impedance for those modeled by classical or transient level models. Machine Base (MBASE) and Zero Impedance (ZSOURCE) values for the steady-state models must match dynamic data. The MDWG steady-state models will use the saturated subtransient impedance data for generators (X"di). Future Generators that are in the models but are not budgeted for construction need to be identified in the Generator Data worksheet of the Data Submittal Workbook.

When modeling mothballed and future retired units, the Pmax, Pmin, Omax, and Qmin values should be modeled as zero. Decommissioned units should be removed from the models.

Shortfall Guidance Process

A shortfall is defined as an instance of insufficient firm resource to supply firm load. Under no circumstances in the Near-Term Transmission Planning Horizon shall generating resources be dispatched in excess of the firm transmission rights allotted to that resource. In the Long-Term Transmission Planning Horizon, if the resources within a modeling area and firm transactions from neighboring modeling areas are insufficient to serve customer load, the following should be investigated as potential modeling solutions to the shortfall:

1. Coordinate reciprocal non-firm transaction(s) with other modeling area(s). All parties are required to add their respective coordinated reciprocal record(s) to the transaction worksheet of the data submittal workbook.
2. Future generation resources that have progressed, at minimum, to the Interconnection Facility Study (per Attachment V, subsection 8.9) stage in the Generation Interconnection (GI) queue, may be modeled (in the Long-Term Transmission Planning Horizon models only) following these requirements.
 a. The in-service date shall be based on the expected in-service date of the GI study.
 b. In order to identify future GI queued generation, the unit name shall be the GI gen number (e.g. GEN-2017-898) and contain a unit ID of Zx (where x is any second ID designation appropriate in PSS®E).
 c. Projects files that add future generation shall have the appropriate Type and Status which can be found in the SPP MOD Project Type/Status Matrix.
3. Future exploratory generation resources may be modeled in the Long-Term Transmission Planning Horizon models following these constraints:
a. In order to identify future exploratory generation, the unit ID of Zx (where x is any second ID designation appropriate in PSS®E) shall be used.

b. When available, exploratory generation should be based upon the host TO Resource Plan.

c. Projects files that add future generation shall have the appropriate Type and Status which can be found in the SPP MOD Project Type/Status Matrix.

d. The addition of exploratory generation shall be consistent with modeling practices that minimize the impact to power flows in neighboring transmission systems (e.g., exercise diligence in siting the exploratory generator topologically proximate to the load that uses its resource).

Note: The Generator Data worksheet data will be maintained to provide a convenient source of data for Member and SPP Staff use. Therefore accurate data in the Generation workbook is imperative. The official SPP generator data is in the MOD Base Case or Project.

Remote Generation Modeling

Purpose
This procedure assures that members adhere to a uniform process when modeling remote generation in SPP.

Modeling Process
If a member acquires remote generation outside their Control Area (steady-state model numbered area), the following modeling process should be followed:

1. All buses should be assigned numbers that are in the host’s control area bus number range.
2. Area Number/Name should be the host’s control area number.
3. Zone Number/Name should be in the host’s control area zone range.
4. Generation Owner Number should be the owner’s designated ID number and percentage ownership.
5. The generation recipient should coordinate the output level and the inter-area transfer with the host control area.

Transaction Update
The transaction workbook should be updated to show a transaction from the control area where remote generation is located to the generation owner control area. If the remote generation is owned by multiple owners, then multiple transactions should be modeled.

Steady-State Data Check List
The steady-state data check list should be used as an aid for ensuring good model data. As the data and preliminary runs are reviewed for each model, the items should be checked off. A copy of this form can be found in Section 7.

Facilities Transferred to SPP’s Functional Control

The SPP FERC "Docket No. RT04-01-00 Volume 1", In the July 2 Order, the Commission: ...(7) ordered that SPP file a list of all transmission facilities that will be transferred to its operational control and revise the Operational Authority White Paper ("OA White Paper") or Membership Agreement, or provide some other binding document, to reflect SPP’s clear
authority to exercise day-to-day control over the appropriate transmission facilities within its footprint...

Attachment AI to the SPP Regional Tariff contains the criteria for inclusion of facilities that are considered "Facilities Transferred to SPP's Functional Control". Transmission facilities meeting the definition set forth in Attachment AI must be included in the SPP MDWG Steady-State Models.

Owner Data and Line Mileage Data (SAS-70 Control)

Per SAS-70 requirements (i.e. - Loss calculations) SPP Loss models must be updated every June and October with current Owner Data and Line Mileage data. To meet the SAS-70 requirement the SPP models must include owner data and line-mileage data. SPP Staff will obtain this data from the MOD Base Case and Projects; therefore, it is important that Members keep the data current in MOD.

Zone Range Assignments

SPP Area
Refer to the most current SPP Area Zone Assignments.

MMWG Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Bus Numbers</th>
<th>Area Number</th>
<th>Zone Number</th>
<th>Owner Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire System</td>
<td>100,000 to 999,999</td>
<td>100 to 999</td>
<td>100 to 1,899</td>
<td>100 to 1,199</td>
</tr>
<tr>
<td>NPC</td>
<td>100,000 to 199,999</td>
<td>100 to 199</td>
<td>100 to 1,199</td>
<td>100 to 1,199</td>
</tr>
<tr>
<td>SPP</td>
<td>200,000 to 299,999</td>
<td>200 to 299</td>
<td>200 to 1,299</td>
<td>200 to 1,299</td>
</tr>
<tr>
<td>ERC</td>
<td>300,000 to 399,999</td>
<td>300 to 399</td>
<td>300 to 1,399</td>
<td>300 to 1,399</td>
</tr>
<tr>
<td>NPCC</td>
<td>400,000 to 499,999</td>
<td>400 to 499</td>
<td>400 to 1,499</td>
<td>400 to 1,499</td>
</tr>
<tr>
<td>SPP</td>
<td>500,000 to 599,999</td>
<td>500 to 599</td>
<td>500 to 1,599</td>
<td>500 to 1,599</td>
</tr>
<tr>
<td>MRO</td>
<td>600,000 to 699,999</td>
<td>600 to 699</td>
<td>600 to 1,699</td>
<td>600 to 1,699</td>
</tr>
<tr>
<td>ERCOT (future)</td>
<td>700,000 to 799,999</td>
<td>700 to 799</td>
<td>700 to 1,799</td>
<td>700 to 1,799</td>
</tr>
</tbody>
</table>
Data Transmittal

Transmitting data to the Southwest Power Pool can be accomplished as follows:

1. **Electronic** --- GlobalScape
2. **E-MAIL** --- SPPEngineeringModeling@spp.org

The preferred method of submittal is through the “SPP MDWG File Sharing Site”, GlobalScape. Include a file (excel, word, or equivalent) with description of data files submitted and which to which models they apply.

The transmitted data file should include the title of the first case and area name, followed by the changes to the first case, title of the second case and the area name, followed by the changes to the second case, etc. See Section 6-B for a sample file format. Case title lines should include the case title in the following format examples: *04SP, *04FA, *04SH, *07SP (no spaces between characters).

Initial Run Review

After all systems prepare and submit data, an initial run is made which assembles all system data, checks for errors, and results in a solved case. The initial run shows all entered data and diagnostic messages. This data is shown first in the initial run printout. Each system should review the data changes and solved case, making corrections as needed in the subsequent runs.

1. **Area Interchange**
 - The area interchange report shows the area control bus, generation on the area control bus, and the net area interchange. The detail of area interchange among SPP systems is shown in the transaction data. The transaction workbook will include the NODE, Provider, and OASIS reservation number. The transaction workbook will use code DDD for transactions that do not have an OASIS reservation number. This data should be checked to ensure accuracy. Discrepancies in the transactions between reporting systems will be noted in the diagnostic messages.

2. **Tie Line Metering**
 - The tie line report shows the tie lines and inter-company power interchange for each system. The tie line metered end should be verified, and should reflect line loss responsibility as accurately as possible. Any changes should be coordinated with the neighboring company involved.

3. **Area Totals**
 - The system generation and load should be checked on the system area summary. This data should be near expected values. The detail of generation is shown in the generation summary. If load is not the expected value, individual bus loads listed in the steady-state detail report should be examined. If loads were scaled from a reference case, the scaling factor should be checked. The load power factor should also be checked as power factors change seasonally. Check Power-factor of loads. The load supplying entities for the MDWG case types will validate each load power-factor with the most current system snapshot that represents that models level (summer peak, winter peak, light load).
4. **Network**

Basic to the accuracy of the steady-state model is the accuracy of the network. The layout of the system representation should be checked. Purely conjectural facilities should not be included. Planned facilities which were modeled in previous steady-state models and have since been delayed or cancelled should be removed entirely from the steady-state model. These facilities cause solution problems for some steady-state programs if left in the model with an off-line status. Planned projects, including reactive resources such as capacitor banks, are to be included in the models. These projects are to be added through MOD in accordance with the MOD Type/Status Matrix of the Web Based Steady-State Model Development Procedure Manual.

5. **Review of Output**

The steady-state report should be checked for the flow on major transmission lines and selected bus voltages. This check can locate unusual results, which does not necessarily mean that data is in error, but rather indicates that additional checking of the model may be appropriate. Three useful reports for locating problems include:

a. The voltage summary,
b. The overloaded branch summary, and
c. The generation summary.

a. Voltage Summaries

Low or high voltages may be caused by a number of factors. Shunt devices may be sized inappropriately. Capacitors should have a positive value and reactors should have a negative value. (Check the CAP/REAC column of the steady-state report). The bandwidth (difference between VSWHI and VSWLO) of switched shunt devices should be wide enough that switching one block of admittance does not move the voltage at the bus completely through the bandwidth, thus causing solution problems at the bus. It is recommended that the minimum voltage bandwidth be 4% if only switched shunts are used to regulate voltage. Switched shunts should not regulate voltage at a generator bus nor should they be connected to the network with a zero impedance tie.

Transformer tap settings may also affect voltages. The steady-state report should be checked for tap settings. Particular attention to LTC-equipped transformers should be given to make sure the proper bus is regulated. A tap setting of less than 1.000 on the tap bus results in an increase in voltage on the non-tap bus. A tap setting greater than 1.000 on the tap bus results in a decrease in voltage on the non-tap bus.

The inclusion of LTC regulation makes tap setting more important. With LTC-equipped transformers, fixed taps may also exist. The LTC tap range should be adjusted to compensate for the effects of fixed taps if necessary. The minimum and maximum number of ULTC and NLTC taps should comply with common industry standard practices.

Transmission line or transformer impedance errors may also affect voltages if the errors are large. See Section 6-A for guidelines of typical transmission line or transformer impedance data.

b. Summary of Overloaded Branches

This summary shows each overloaded circuit, the flow on the circuit, and the normal and emergency ratings. Overloading may be caused by an incorrect rating. Both normal and...
emergency ratings should be given. Emergency ratings must never be less than normal ratings, though the ratings may be equal. The impedance of a circuit element or of a parallel element may also cause overloading. See Section 6-A for guidelines of typical transmission line or transformer impedance data.

c. Generation Summary

All buses with generation as well as all buses with voltage regulation are shown in this summary. Generators should not be modeled as unregulated buses.

The MW ratings, Mvar ratings, machine base (MBASE), and ZSOURCE must be supplied for each generator. Generator PMAX ratings should represent the net capability of each machine connected to the bus. Ratings should be adjusted seasonally in consideration of scheduled outages. The generation should be shown on the correct bus. Generation must not exceed the rating. Generator MBASE values should be equal to the nameplate MBASE rating of the unit. Each unit should be explicitly modeled and listed in the SPP Generation tab of the Data Submittal Workbook.

The generator workbook will be updated to include both the saturated and unsaturated impedance for each machine. Fuel types, especially wind farms, should be identified in the appropriate column.

The reactive output limits (MAX and MIN) should be realistic values as defined in SPP Planning Criteria. For generators, a general rule of thumb sets MVAR limits as:

1. \(QT \text{ --- MAX = one-half of MW rating} \)
2. \(QB \text{ --- MIN = negative one-third of MW rating} \)

If the slack bus generation changes significantly from the input value, it indicates an error in the model data. Regulated buses are not limited to generators, but also include other equipment such as synchronous condensers and static var controllers. If the actual voltage does not match the desired voltage, a reactive limit will be reached. The desired voltage for each regulated bus should be checked seasonally.

The Generator Owners/Data Submitters of utility scale wind and solar resources shall provide an equivalent representation consisting of all collector bus(es) and the main power step-up transformer(s) from the collector bus(es) to the transmission point of interconnection (POI). Additionally, a single step-up transformer and feeder parameters for each connected generator model, from the generator terminals to a collector bus, shall be included in the equivalent representation, with wind/solar devices lumped together to represent the aggregate wind turbines or solar inverters in each collection network. The equivalent representation shall be an as-built representation (as reasonably as possible) with all transformer data reflective of manufacturer test report information. Any future changes or updates to equipment (wind turbines or solar inverters) or electrical topology shall include an updated equivalent representation to the Transmission Planner before submitting to the Planning Coordinator.

Generator facilities comprised of more than a single inverter (battery, flywheel, etc.) and other similar technology should have similar equivalent model representation. Figure 1 and Figure 2 below are illustrations provided for use as guidance for the equivalent representations of such renewable resources; however, Figure 2 shall be the representation in the planning models.

Generator Owners/Data Submitters should coordinate with their host Transmission Owners to obtain valid SPP bus numbers for use in the equivalent representation of the

Figure 1: Detailed Wind and Solar Farm Representation (Not to be used for planning models)

- **POI** – Point Of Interconnection
- **MPT** – Main Power Transformer
- **GSU** – Generator Step-Up Transformer
- **N** – Number of turbines/inverters/GSU transformers
- **#** – Number of Modules/String
- **Solar Module**
Periodic Model Updates

After the annual update process is complete, it may become necessary to perform an update to the information contained in the model(s). Some of the reasons for updating the model(s) and the procedure for doing so are listed below:

System Impact Studies/Expansion Options Studies (Long-Term)
SPP performs transmission planning studies and assessments for various eligible customers. These model sets are developed in accordance with the SPP Planning Modeling Process and include models used for the SPP Transmission Expansion Plan, Transmission Service Studies, and Generation Interconnection Studies, which all use the data submitted to MOD as a base for model development.

MDWG Updates
At some point after the current models are extracted out of MOD some data will need to be updated to reflect pertinent changes to the system (i.e., lost or added transmission capability, lost or added generation, improved data, etc.). There are several ways of submitting changes to the steady-state models.

Two of these methods are:

a. Using the steady-state update procedure in Section 5 to update MOD.

b. Submitting a PTI, IDEV format file to perform the RDCH operation. **This method should only be used for profile changes. Each company should only submit one IDEV file per modeling pass. Under special circumstances topology changes can be submitted in an IDEV file as long as a MOD Project is submitted in MOD.**

It is imperative that any information submitted to SPP be error free and complete to avoid delays in the implementation of the changes.
The most current update to the models will always be posted on the SPP file sharing site.

Program Operation

The SPP steady-state models are created, modified, and maintained utilizing the Power Technologies, Incorporated (PTI) Power System Simulator for Engineers (PSS®E) software package. The PSS®E program is installed on SPP computer facilities located in Little Rock, Arkansas.

PTI-PSS®E Data Format

Steady-State data is input to the models from computer text data files structured in the formats described in the PSS®E Program Operation Manual Volume I, Chapter 4: Section 1.1. All data is read in *“free format”* with data fields separated by a *comma* (*not* blanks). Each type of data category is terminated by the specification of a zero in the first field of the record with the exception of the model identification data.

Data is **added** to the SPP steady-state models as specified in these format structures for records where no corresponding component is found in the model. The **modification** of existing data in the model is accomplished using the same format structure, except that only the values that need modification are specified.

Data may also be deleted from the models. When a bus is specified for deletion, all associated data for that bus will be removed (e.g., branches, transformers, generators, and loads). The **user cannot delete a piece of equipment and then add it with new data. For example, to upgrade a bus from one voltage to another, the bus data must be modified.** Data currently in the model is used as the default value for data fields not specified in the format.
Steady-State Solution
The steady-state solution will have “Area interchange control” with the “Tie Line and Loads” option selected to meet ERAG MMWG model building requirements.

The SPP transaction workbook must not include transactions for sales to loads in other control areas if the loads are specifically identified with source control area number. If the loads in an external control area are not identified with the source control area’s number, then a transaction is necessary to schedule to this load. See example below for more details for a load that Source Area XXX has the obligation to serve:

No Transaction Needed
Source Area: XXX
Sink Area: YYY
Sink Load: XXX

Transaction Needed
Source Area: XXX
Sink Area: YYY
Sink Load: YYY

Loads may be modeled on the foreign area bus as long as it is identified as belonging to the owning area.

SPP will identify remote SPP loads in the base cases, pass 1, pass 2, and pass 3 models.
TRANSMITTED DATA FILE EXAMPLES (Refer to MOD Procedure Manual)

PTI-PSS®E SHORT CIRCUIT DATA FORMAT

The SPP Short Circuit data is included in MOD Base Case (Network) and Project data. Short circuit data that is missing in the MOD Base Case must be entered in MOD via a MOD Project with the Project Type of Network and Project Status of Update. Missing Project sequence data must be updated by applying a sequence file to the Project in MOD. The sequence data is comprised of positive, zero, and negative sequence data.

The PC (SPP) prior to presenting short circuit models to the MDWG for approval shall verify that all submitted member data has been correctly added to the short circuit models. The short circuit models shall be checked for errors and validated as usable by the PC. Any errors in the sequence data shall be brought to the attention of the Data Submitter. The usability checks shall include the PC performing data checks for missing sequence data and testing of models. The test of the models shall consist of fault analysis for three-phase, single-line-to-ground, and double-line-to-ground. The testing of the models is to ensure the models are ready for fault analysis by the SPP membership and absent of modeling errors.

Member submitted sequence via an IDEV file applied to a model will not be included in the next published model (Pass N or Final). The reason that sequence data is not carried over from one model set to the next model set is that sequence data is exported from MOD. Post MOD model processing IDEV files are not applied to the next model set; therefore, a MOD project which includes the sequence data must be submitted to MOD and accepted before it is included in the next MOD exported model.
Typical Transmission Line or Transformer Impedance

These tables are only for the checking of reasonableness of line and transformer data and should not be used in data preparation for existing facilities.

Typical Transmission Line Data

<table>
<thead>
<tr>
<th>kV</th>
<th>Amps</th>
<th>R/mile</th>
<th>X/mile</th>
<th>X/R</th>
<th>MVA</th>
<th>X/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>600</td>
<td>0.00540</td>
<td>.0143</td>
<td></td>
<td>0.0030</td>
<td>2.6</td>
</tr>
<tr>
<td>115</td>
<td>1200</td>
<td>0.00064</td>
<td>.0050</td>
<td></td>
<td>0.00084</td>
<td>7.8</td>
</tr>
<tr>
<td>138</td>
<td>1200</td>
<td>0.00045</td>
<td>.0038</td>
<td></td>
<td>0.00120</td>
<td>8.4</td>
</tr>
<tr>
<td>161</td>
<td>2000</td>
<td>0.00020</td>
<td>.0019</td>
<td></td>
<td>0.00220</td>
<td>558</td>
</tr>
<tr>
<td>230</td>
<td>2000</td>
<td>0.00010</td>
<td>.0010</td>
<td></td>
<td>0.0040</td>
<td>796</td>
</tr>
<tr>
<td>345</td>
<td>2000</td>
<td>0.00004</td>
<td>.00048</td>
<td></td>
<td>0.0091</td>
<td>1195</td>
</tr>
<tr>
<td>500</td>
<td>2000</td>
<td>0.00002</td>
<td>.00026</td>
<td></td>
<td>0.0170</td>
<td>1732</td>
</tr>
</tbody>
</table>

A typical transmission transformer’s impedance is approximately 8% on the OA rating base.

For example:

On a 345 kV Line that is 70 miles long -

R is: \(70(0.00004) = 0.0028\)

X is: \(70(0.00048) = 0.0336\)

Charging is: \(70(0.0091) = 0.637\)

A. System Abbreviations & Area Number Assignments

System Abbreviations & Area Number Assignments can be found on SPP’s website, spp.org, under the documents section of the Model Development Working Group.

B. SPP Members

The SPP Members are identified on the SPP Website. See the “Members” link under “About SPP” on www.SPP.org.
7. FORMS – Area Summary Report

POWER FLOW DATA AREA SUMMARY REPORT

|------|---------------|-------------------------|-------------------|---------------------|------------------|--------|----------|-----------------|-------------------------|--------------------------|

Note:

7. FORMS – Steady-State Data Checklist

Formatted: Font: Cambria

Field Code Changed
CASE BUS DATA
- Names - 12 characters
- Voltage Codes
- Power Factor
- Load - Real
- Reactive Load
- Voltage
- Fixed Shunts - Reactors
- Capacitors
- Dynamic Shunts - SVC's
- Synchronous Condensors
- Generation - Dispatch/Net
- Reactive Output
- Reactive Limits
- Regulated Voltages
- Generator Rating
- Slack Bus

LINE DATA
- Ratings - Normal
- Emergency
- Impedance - Resistance
- Reactance
- Charging
- Flows
- Transformers - Taps
- Tap Ranges
- Regulated Bus

OTHER DATA
- Net Area Interchange
- Area Transactions

POWER FLOW DATA CHECKLIST

<table>
<thead>
<tr>
<th>CASE BUS DATA</th>
<th>LINE DATA</th>
<th>OTHER DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names - 12 characters</td>
<td>Ratings - Normal</td>
<td>Net Area Interchange</td>
</tr>
<tr>
<td>Voltage Codes</td>
<td>Emergency</td>
<td>Area Transactions</td>
</tr>
<tr>
<td>Power Factor</td>
<td>Impedance - Resistance</td>
<td></td>
</tr>
<tr>
<td>Load - Real</td>
<td>Reactance</td>
<td></td>
</tr>
<tr>
<td>Reactive Load</td>
<td>Charging</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>Flows</td>
<td></td>
</tr>
<tr>
<td>Fixed Shunts - Reactors</td>
<td>Transformers - Taps</td>
<td></td>
</tr>
<tr>
<td>Capacitors</td>
<td>Tap Ranges</td>
<td></td>
</tr>
<tr>
<td>Dynamic Shunts - SVC's</td>
<td>Regulated Bus</td>
<td></td>
</tr>
<tr>
<td>Synchronous Condensors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generation - Dispatch/Net</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactive Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulated Voltages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slack Bus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

Field Code Changed

Area Name & Number:

Prepared By:

Telephone Number:

Formatted: Space After: 0 pt, Line spacing: single
8. **ACRONYMS**

ATC – Available Transfer Capability
CAP – Capacitor
EIA – Energy Information Act
ERAG – Eastern Interconnection Reliability Assessment Group
ERCOT – Electric Reliability Council of Texas
FPC – Federal Power Commission
IDEV – Input Device (PSS®E Dialog Input Device Selection Activity)
LTC – Load Tap Changing
MAPP – Mid-Continent Area Power Pool
MAIN – Mid-American Interpool Network
MBASE – Machine Base
MDWG – Model Development Working Group
MMWG – Multiregional Modeling Working Group
Mvar – Megavar
MW – Megawatt
NERC – North American Electric Reliability Corporation
PSS®E – Power System Simulator for Engineers
PTI – Power Technologies, Inc.
pu – Per-unit
RAWD – Raw Data
RDCH – Read Change (Command to read in and change data in PSS®E)
REAC – Reactor
SERC – Southeastern Electric Reliability Council
SPP – Southwest Power Pool, Inc.
STEP – SPP Transmission Expansion Plan
TWG – Transmission Working Group
WSCC – Western Systems Coordinating Council
ZSOURCE – Zero Impedance

* **NOTE** – A complete listing of other SPP acronyms can be found on the SPP website at www.spp.org. See the “Glossary and Acronyms” link under “Training”.
9. MDWG Contact List

The MDWG Contact List can be found on SPP’s website, spp.org, under the documents section of the Model Development Working Group.

10. SPP Model Release Guidelines

A. SPP MODEL RELEASE GUIDELINES

1. Steady-State and Short Circuit Models

SPP Base Case steady-state models and short circuit models are available to all SPP members. SPP and its members, by participating in SPP base case development, grant authority to the other participating members and SPP to release SPP Base Case steady-state models or reduced network equivalents of those models to government agencies. The public may receive models by filling out a SPP models order form and signing the appropriate SPP Confidentiality Agreement. For more information on requesting Base Case steady-state models, contact the SPP Model Contact.

Base case steady-state models of external systems, which are beyond the electrical borders of SPP and released under FERC Form 715 to government agencies, shall be the SPP models or a reduced network equivalent of the SPP models. If equivalized, such external models must be disclaimed, as equivalent representations not intended for study of the transmission systems in those external areas.

2. System Dynamic Database and Dynamic Simulation Cases

SPP Dynamic Base Case Models are available to all SPP members. SPP and its members, by participating in MMWG dynamics database (SDDB) and dynamics simulation case development, grant authority to the other participating Regions, to receive and use the SDDB and dynamics simulation cases. Regional members may send dynamics simulation cases or dynamics data to third parties provided that the third party executes a SPP confidentiality/non-disclosure agreement. The MMWG Dynamics Database (SDDB) remains the property of and is for the sole use of the MMWG participating Regions of NERC and their members.

3. SPP Model contact:

Please send all general modeling questions and concerns to planningmodeling@spp.org.

B. Request an SPP Map / Model

Questions? You may find it helpful to consult SPP Maps & Models FAQ.

If you are an SPP member, interconnection customer, transmission service customer (or their consultant) and would like to request an SPP Transmission Map or Model, please complete the appropriate forms below. (Requests for Joint & Interregional System Planning Models are addressed on this page.) If you are requesting access on behalf of an organization other than your employer, a Consultant Authorization Form must also be submitted on your behalf.

If you have obtained FERC CEII approval and would like to request additional CEII, please submit the appropriate SPP Form(s) and SPP Confidentiality Agreement, providing the requester’s FERC CEII ID Number and attaching a copy of the FERC Authorization Letter (i.e., FERC Notice of Intent to Release).

Completed SPP Forms and the SPP Confidentiality Agreement should be e-mailed to SPP Customer Relations. The original, signed hardcopy of the SPP Confidentiality Agreement should be mailed to the attention of Susan Polk, 201 Worthen Drive, Little Rock, Arkansas 72223.

If you have questions or would like additional assistance, please contact SPP Customer Relations at (501) 614-3309.

Last Updated June 30, 2015

11. MDWG Case Type Set

The current MDWG Case Type Set can be found on SPP’s website, spp.org, under the documents section of the Model Development Working Group.

12. Error Screening

The following data error screening checks will be used to check case quality:

- Interchange and tie line data not matching the raw data will not be accepted until either the interchange data or the raw data are corrected.
- All CNTB errors shall be corrected. (Exceptions will be documented.)
- All instances of mode=1 switched shunts with VHI – VLO < .005 per unit shall be corrected.
- Any regulation by any regulating device of a bus more than one bus away, except where there is a three-winding transformer in which case no more than two buses away, shall be corrected.
- All instances of TCUL transformers with more than 50 tap steps shall be corrected.
- All instances of voltage controlling bandwidth less than twice the transformer tap step size shall be corrected.
- All transmission lines 69 kV and above, transformers with a secondary voltage of 69 kV and above, and Generator Step Up (GSU) transformers shall not have overloads (loading above 100% of Rate A) in the base case. Exception: 10 year cases may have overloads.
13. DYNAMICS DATA SUBMITTAL REQUIREMENTS AND GUIDELINES

A. STEADY-STATE MODELING REQUIREMENTS

1) All steady-state generators, including synchronous condensers and Static VAR Compensators (SVCs) modeled as generators, shall be identified by a bus name and unit id. All other dynamic devices, such as switched shunts, relays, and HVDC terminals, shall be identified by a bus name and base kV field. The bus name shall consist of eight characters and shall be unique within the Eastern Interconnection. Any changes to these identifiers shall be minimized.

2) Where the step-up transformer of a synchronous or induction generator or synchronous condenser is not represented as a transformer branch in the steady-state cases, the step-up transformer shall be represented in the steady-state generator data record. Where the step-up transformer of the generator or condenser is represented as a branch in the steady-state cases, the step-up transformer impedance data fields in the steady-state generator data record shall be zero and the tap ratio unity. The mode of step-up transformer representation, whether in the steady-state or the generator data record, shall be consistent from case to case within a model series.

3) Where the step-up transformer of a generator, condenser, or other dynamic device is represented in the steady-state generator data record, the resistance and reactance shall be given in per unit on the generator or dynamic device nameplate MVA. The tap ratio shall reflect the actual step-up transformer turns ratio considering the base kV of each winding and the base kV of the generator, condenser or dynamic device.

4) In accordance with PTI PSS®E requirements, the Xsource value in the steady-state generator data record shall be as follows:
 a) Xsource = X''d for detailed synchronous machine modeling
 b) Xsource = X'd for non-detailed synchronous machine modeling
 c) Xsource = should be equal to locked rotor impedance for an induction machine
 d) Xsource = 1.0 per unit or larger for all other devices

5) Generally, SVCs should be represented in steady-state as continuously variable switched shunts rather than as generators. In iterative steady-state solutions, a generator which hits a VAR limit on solution iteration will lock at that value, but a switched shunt will move off the limit in a subsequent iteration if appropriate. PSS®E dynamic library models compatible with either representation are available. If a user model representing particular SVC and control features is to be used and that model assumes generator representation, the SVC should be represented as a generator in the steady-state.
B. DYNAMIC MODELING REQUIREMENTS

1) All synchronous generator and synchronous condenser modeling and associated data shall be detailed except as permitted below. Detailed generator models consist of at least two direct axis circuits and one quadrature axis equivalent circuit. The PSS®E dynamic model types classified as detailed are GENROU, GENSAL, GENROE, GENSAE, and GENDCO.

The use of non-detailed synchronous generator or condenser modeling shall be permitted for units with nameplate ratings less than or equal to 50 MVA under the following circumstances:

a) Detailed data is not available because manufacturer no longer in business.
b) Detailed data is not available because unit is older than 1970.

The use of non-detailed synchronous generator or condenser modeling shall also be permitted for units of any nameplate rating under the following circumstances only:

a) Unit is a phantom or undesignated unit in a future year MMWG case.
b) Unit is on standby or mothballed and not carrying load in MMWG cases.

The non-detailed PSS®E model types are GENCLS and GENTRA. When complete detailed data are not available, and the above circumstances do not apply, typical detailed data shall be used to the extent necessary to provide complete detailed modeling.

2) All synchronous generators and condensers modeled in detail per Requirement II.1 shall also include representations of the excitation system, turbine-governor, power system stabilizer, and reactive line drop compensating circuitry. The following exceptions apply:

a) Excitation system representation shall be omitted if unit is operated under manual excitation control.
b) Turbine-governor representation shall be omitted for units that do not regulate frequency such as base load nuclear units, pumped storage units in pumping mode and synchronous condensers.
c) Power system stabilizer representation shall be omitted for units where such device is not installed or not in continuous operation.
d) Representation of reactive line drop compensation shall be omitted where such device is not installed or not in continuous operation.

3) All other types of generating units and dynamic devices including induction generators, static VAR compensators (SVC), high-voltage direct current (HVDC) systems, static compensators (STATCOM), wind turbines, and photovoltaic systems shall be represented by the appropriate PSS®E dynamic models.

4) All demand data shall include a load model which represents the expected dynamic behavior of the loads. Non-scalable loads greater than or equal to 10 MW are required to have a dynamic load model representation. For all other types of loads, absent detailed dynamic load models, the real portion (MW) of all demand data is converted to 100% constant current and the reactive portion (Mvar) of all demand data is converted to 100% constant admittance.

5) Standard PSS®E dynamic models shall be used for the representation of all generating units and other dynamic devices unless both of the following conditions apply:

a) The specific performance features of the user-defined modeling are necessary for proper representation and simulation of inter-regional dynamics, and
b) Standard PSS®E dynamic models cannot adequately approximate the specific performance features of the dynamic device being modeled.
6) When user-defined modeling is used, written documentation shall be supplied explaining the dynamic device performance characteristics. The documentation for all user-defined models shall be provided as a separate document and must include the characteristics of the model, including block diagrams, values and names of all model parameters, and a list of all state variables. Any benign warning messages that are generated by the model code at compilation time should also be documented. Source code for User Models shall be submitted in the FLECS language of the current PSS®E revision, C, or FORTRAN. User models created in MATLAB/SIMULINK are not permitted because users of the SDDDB cannot run them without purchase of additional software.

7) Netting of small generating units, synchronous condensers, or other dynamic devices with bus load shall be permitted only when the unit or device nameplate rating is less than or equal to 20 MVA. (Note: any unit or device which is already netted with bus load in the MMWG cases need not be represented by a dynamic model.)

8) Lumping of similar or identical generating units at the same plant shall be permitted only when the nameplate ratings of the units being lumped are less than or equal to 50 MVA. A lumped unit shall not exceed 300 MVA. Such lumping shall be consistent from case to case within a model series.

9) Where per unit data is required by a dynamic model, all such data shall be provided in per unit on the generator or device nameplate MVA rating as given in the steady-state generator data record. This requirement also applies to excitation system and turbine-governor models, the per unit data of which shall be provided on the nameplate MVA of the associated generator. The maximum and minimum power of cross compound units should be provided on the nameplate MVA of one machine in accordance with PSS®E model IEEEG1 conventions.

10) Exceptions will be approved by MMWG on a case by case basis and the reason for each exception will be documented in the SDDDB.

C. DYNAMICS DATA VALIDATION REQUIREMENTS

1) All dynamics modeling data shall be screened according to the SDDDB data screening checks. All data items not passing these screening tests shall be resolved with the generator or dynamic device owner and corrected.

2) All regional data submittals to the MMWG coordinator shall have previously undergone satisfactory initialization and 20-second no-disturbance simulation checks for each dynamics case to be developed. The procedures outlined in Section III.H* of this manual (*yet to be written) may be applied for this purpose.

D. GUIDELINES

1) Dynamics data submittals containing typical data should include documentation which identifies those models containing typical data. The CON conservation models, such as GENROA and GENSA, which essentially copy dynamics data from one unit to another, may be useful for this purpose. When typical data is provided for existing devices, the additional documentation should give the equipment manufacturer, nameplate MVA and kV, and unit type (coal, nuclear, combustion turbine, hydro, etc.).

2) The voltage dependency of loads should be represented as a mixture of constant impedance, constant current, and constant power components (referred to as the ZIP model). The Regions should provide parameters for representing loads via the PTI PSS®E CONL activity. These parameters may be specified by area, zone, or bus. Other types of load modeling should be provided to MMWG when it becomes evident that accurate representation of interregional dynamic performance requires it.
14. PROCEDURES FOR SUBMISSION OF DYNAMICS DATA TO THE MMWG COORDINATOR

Regional Coordinators have two options, described below, for submitting dynamics data to the MMWG Coordinator.

A. DYNAMICS DATA UPDATES USING EXCEL TEMPLATE

Regional dynamics data updates are incremental to the dynamics data in the previous year release of SDDB. Regional Coordinators should therefore verify that bus names and unit IDs in SDDB are consistent with those in the MMWG steady-state to be made dynamics ready.

The table below describes the various types of updates and the required data and information that should be provided on the Excel template and in a separate DYRE file.

<table>
<thead>
<tr>
<th>Type of Update</th>
<th>Template Entries</th>
<th>Complete DYRE format record</th>
<th>Examples / Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change one or more parameters of a</td>
<td>Bus name, unit ID, model name, parameter name, new value</td>
<td>No</td>
<td>The voltage regulator gain is changed to the value determined by test.</td>
</tr>
<tr>
<td>dynamics model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Add a new model to an existing unit</td>
<td>No</td>
<td>Yes</td>
<td>A stabilizer is being added to a unit which did not have one.</td>
</tr>
<tr>
<td>Delete a model</td>
<td>Bus name, unit ID, model name</td>
<td>No</td>
<td>A stabilizer is removed.</td>
</tr>
<tr>
<td>Replace a model with another model of</td>
<td>Bus name, unit ID, model name for deleted model.</td>
<td>Yes for new model</td>
<td>1. A DC exciter is replaced by a static exciter.</td>
</tr>
<tr>
<td>the same equipment group</td>
<td></td>
<td></td>
<td>2. A classical machine model is replaced by a detailed model.</td>
</tr>
<tr>
<td>Change bus name and/or unit ID for</td>
<td>Old and new names; old and new unit IDs</td>
<td>No</td>
<td>Maintain the same name and unit ID and the model data will follow automatically.</td>
</tr>
<tr>
<td>all models of an existing unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change bus number</td>
<td>No</td>
<td>No</td>
<td>Maintain the same name and unit ID and the model data will follow automatically.</td>
</tr>
<tr>
<td>Add dynamic models for a new generating</td>
<td>Bus name, unit ID, in service and out of service dates, MVA base, Zsource, RPM, unit type</td>
<td>Yes</td>
<td>Same requirements whether unit is at new or existing bus.</td>
</tr>
<tr>
<td>unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove a unit and all associated</td>
<td>Bus name, unit ID</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>models</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. COMPLETE SET OF DYNAMICS DATA

The regional dynamics data must be in the format of a PSS®E DYRE file. The data must be compatible and consistent with the MMWG steady-state selected for the dynamics cases that are being developed. One file for all cases is preferable.
15. MMWG DELIVERABLES

A. REGIONAL COORDINATORS

The Regional Coordinators will provide the following to the MMWG Coordinator(s).

1. Steady-State Cases
 A. Data as needed to create the MMWG steady-state cases in RAWD or Saved Case format, regional representation shall be within an entire solved MMWG steady-state model in the proper PSS®E revision format.
 B. Tie-line and interchange data in the specified format.
 C. IDEV files for any data changes.
 D. PSS®E formatted contingency file containing five N-1 contingencies valid for all cases in the model series.
 E. Data Dictionary containing fields for Bus Number, 18 character PSS®E Bus Name, EIA Plant Code (U.S. only) and Non-Abbreviated Bus Name.

2. Dynamics Cases
 A. Dynamics input data in DYRE format for new models.
 B. SDDB Excel worksheet for changes to the database.
 C. FLECS code and documentation for user defined models.
 D. Load conversion CONL file sorted by area.
 E. List of netted generation buses.
 F. Two contingency events per region in IDEV format.

B. MMWG COORDINATOR(S)

The MMWG Coordinator(s) will post the following to the ERAG Web Site.

1. Steady-State Cases
 A. Steady-State RAWD case file.
 B. Conversion IDEV files.

2. Dynamics Cases
 A. Dynamics case input data, output files and instructions including:
 A. Dynamics input data in DYRE format.
 B. FLECS code for user defined models.
 C. Load conversion CONL file sorted by area.
 D. Any IPLAN or PYTHON programs necessary to set up the dynamics case.

4. Final reports.
16. STEADY-STATE MODELING GUIDELINES

1. **Modeling Detail** - Each bus should be assigned the appropriate area, owner, and zone. All transmission lines 115 kV and above and all transformers with a secondary voltage of 115 kV and above should be modeled explicitly. Significant looped transmission less than 115 kV should also be modeled.

2. **Nominal Bus Voltage** – All bus voltages are expressed as a phase-to-phase voltage. All buses should have a non-zero nominal voltage. Nominal voltages of buses connected by lines, reactors, or series capacitors should be the same. The following nominal voltages are standard for AC transmission and sub-transmission in the United States and Canada and should generally be used: 765, 500, 345, 230, 161, 138, 115, 69, 46, 34.5, and 26.7 kV. In addition, significant networks exist in Canada having the following nominal voltages: 735, 315, 220, 120, 118.05, 110, 72, and 63.5 kV. Nominal voltages of generator terminal and distribution buses less than 25 kV are at the discretion of the reporting entity. If transformers having more than two windings are modeled with one or more equivalent center point buses and multiple branches, rather than as a 3-winding transformer model, it is recommended that the nominal voltage of center point buses be designated as 999 kV. Because this voltage is above the standard range of nominal voltages, it can easily be excluded from the range of data to be printed in steady-state output.

3. **Islanded Buses** – Islanded buses shall not be modeled.

4. **Generator Modeling of Loads** – Fictitious generators should not be used to “load net” (by showing negative generation) a model of other nonnative load imbedded in steady-state areas. It is recommended that a separate zone be used to model such loads to allow exclusion from system load calculations.

5. **Zero Impedance Branches** – Bus ties that are opened to represent switching during contingencies may be modeled in detail. Zero impedance branches are permitted to model bus ties using \(R=0.00000 + X=0.0001 \) and \(B=0.00000 \). These values facilitate differentiating between bus ties and other low impedance lines, utilizing the zero impedance threshold THRESH in the PSS®E program. When connected between two voltage controlled (generator, switched shunt, or TCUL controlled), bus ties or other low impedance lines should be modeled using an impedance of \(R=0.0001 + X=0.002 \) and \(B=0.00000 \). This allows use of near-zero impedance attached to controlled buses that will be large enough to avoid significant solution problems.

6. **Impedance of Branches In Network Equivalents** – Where network representation has been equivalenced, a maximum cutoff impedance of 3.0 p.u. should be used.

7. **Negative Branch Reactances** – Except for series capacitors, negative branch reactances do not represent real devices. Their use in representing three winding transformers is obsolete. Negative branch reactances limit the selection of steady-state solution techniques and should be avoided.

8. **Transformers** – Effective with Revision 28 of PSS®E, off-nominal turns ratios may not be specified for branches; a block of four or five data records must be entered for each transformer. The off-nominal turns ratio in per unit, or the actual winding voltage in kilovolts, and the phase shift in degrees shall be specified for each winding. The measured impedance (resistive and inductive) between each pair of windings shall be specified; data entry options permit these to be entered in (1) per unit on system (100 MVA) base, (2) per unit on winding MVA base, or (3) load loss in watts and impedance on winding MVA base and base voltage.
9. **Transformers Controlling Voltage or Reactive Power Flow** – The upper and lower limits of off-nominal turns ratio and the number of tap positions available are entered for winding 1 of transformers controlling voltage or reactive power flow. Default values of 1.1, 0.9 and 33 are representative of U.S. practice. The upper and lower voltage limits are entered for transformers controlling voltage and the difference, in per unit, should be at least twice the tap step size. The upper and lower MVAR limits are entered for transformers controlling reactive power flow and these limits should differ by at least 10 MVAR. Limits should accurately represent the actual operation of automatic control devices.

10. **Remote Regulation** – Regulation of a bus voltage more than one bus away (not counting hidden center point buses of three winding transformers) from the regulating device should be avoided. The sign of parameter CONT determines whether the off-nominal turns ratio is increased or decreased to increase voltage at the bus whose voltage is controlled by this transformer.

11. **Phase Shifting Transformers (PSTs)** – Manufacturer tested capability and operational limits must be provided to SPP in order to allow corrective actions to be developed by SPP planning staff for transmission planning purposes. PSTs will be represented in the planning models as Two-winding transformers with both windings at the same nominal voltage level. The active power flow into winding 1 is entered. The tolerance should be no less than 5 MW; i.e., a 10 MW dead band. The controlling band should be at least 10 degrees. The following characteristics should be considered by the entity submitting PST modeling data for the planning models:

a) Real-time operational auto or manual adjustment operation of the PST.
b) Real-time operational average MW flow for a particular season (e.g., average hourly MW flow is +18MW directional based) during the Summer Peak Season, June 1 – September 30, in order to represent what is typically flowing through the PST during a particular season. This applies to PSTs that are not modeled for auto adjustment, in order to appropriately model the phase shift angle and relative MW flow, but should also consider the capability of the transformer regardless of the type of operation.
c) Real-time operational MW flow limits (e.g., ±20 MW).
d) Real-time operational phase shift angle range (e.g., -52.9° to 31.4°).
e) The applicable planning model impedance table should reflect the impedance correction adjustments as the phase shift angle moves through the various angle steps.
f) Applicable long-term firm transmission service levels for the PST.

12. **Branch and Transformer Ratings** – Normal is defined as continuous ratings for system intact conditions and emergency is defined as limited duration ratings used until the system is returned to normal. Accurate normal and emergency seasonal ratings of facilities are necessary to permit proper assessment of facility loading in regional and interregional studies. Three rating fields are provided for each branch and each transformer winding. Normal and emergency ratings should be entered in the first two fields (RATEA and RATEB, respectively); use of the third rating field (RATEC) is optional. Ratings should be omitted for model elements which are part of an electrical equivalent. The rating of a branch or transformer winding should not exceed the rating of the most limiting series element in the circuit, including terminal connections and associated equipment. The emergency rating should be greater than or equal to the normal rating.

13. **Generator Step-Up Transformers (GSU)** – When modeled implicitly, the GSU Resistance, reactance and tap setting (all in per unit values) shall be provided along with the Generator data. Whenever modeled explicitly, a GSU shall be modeled similar to a power transformer and the GSU nominal winding voltages, impedance(s), tap ratios, minimum and maximum tap position limits, number of tap positions, regulated bus (as applicable), normal and emergency ratings and in-service status data shall be provided. GSUs may be modeled explicitly as deemed
necessary by either the transmission owner or the Regional Reliability Organization. Their modeling should be consistent with the associated dynamics modeling of the generator. Generator step-up transformers of cross-compound units should be modeled explicitly.

14. Out-of-Service Generator Modeling – Out-of-service generators should be modeled with a STATUS equal to zero.

15. Generator MW Limits – The generation capability limits specified for generators (PMIN and PMAX) should represent realistic seasonal unit output capability for the generator in that given base case. PMAX should always be greater than or equal to PMIN. Net maximum and minimum unit output capabilities should be used unless the generator terminal bus is explicitly modeled, the generator step-up transformer is modeled as a branch, and unit load is modeled at the bus or buses from which it is supplied.

16. Generator MVAR Limits – The MVAR limits specified for generators (QMIN and QMAX) should represent realistic net unit output capability of the generator modeled. QMAX should always be greater than or equal to QMIN. Net maximum and minimum unit output capabilities should be used unless the generator terminal bus is explicitly modeled, the generator step-up transformer is modeled as a branch, and unit load is modeled at the bus or buses from which it is supplied.

17. Small Generators, Capacitors, and Static VAR Devices – Small generators (e.g., 10 MVA), small capacitors, and small SVCs have limited reactive capability and cannot effectively regulate transmission bus voltage. Modeling them as regulating increases solution time. Consideration should be given to modeling them as non-regulating by specifying equal values for QMIN and QMAX. If several similar machines or devices are located at a bus and there is a need to regulate with these units, they should be lumped into an equivalent to speed solution.

18. Coordination of Regulating Devices – Multiple regulating devices (generators, switched shunt devices, tap changers, etc.) controlling the bus voltage at a single bus, or multiple buses connected by Zero Impedance Lines as described above, should have their scheduled voltage and voltage control ranges coordinated. Also, regulated bus voltage schedules should be coordinated with the schedules of adjacent buses. Coordination is inadequate if solving the same model with and without enforcing machine regulating limits causes setting MVAR output changes greater than 500 MVAR at machines connected no more than two buses away.

19. Over and Under Voltage Regulation – Regulation of voltage schedules exceeding 1.10 per unit or below 0.90 per unit should be avoided.

20. Flowgates – All transmission elements comprising part of one or more flowgates should be included in the data submitted by each region. A flowgate is a selected transmission element or group of elements acting as proxy for the transmission network representing potential thermal, voltage stability, rotor angle stability, and contractual system constraints to power transfer.

21. Fixed Shunts – All fixed shunt elements at buses modeled in the steady-state should be modeled explicitly (not as loads or included with load). The status should be set to zero if the shunt is not in service. Fixed shunt elements that are directly connected to a bus should be represented as bus shunts. Fixed shunt elements that are directly connected to and switch with a branch should be represented as line shunts.

22. Switched Shunts – Switched shunt elements at buses modeled in the steady-state should be modeled explicitly. Continuous mode modeling using a switched shunt should not be used unless it represents actual equipment (e.g., SVC or induction regulator). The number and size of switched admittance blocks should represent field conditions. The bandwidth (difference between VSWHI and VSWLO) of switched shunt devices should be wide enough that switching one block of admittance does not move the voltage at the bus completely through the bandwidth, thus causing solution problems at the bus. It is recommended that the minimum
voltage bandwidth be 4% if only switched shunts are used to regulate voltage. Switched shunts should not regulate voltage at a generator bus, nor should they be connected to the network with a zero impedance tie.

23. **Static Var Systems** – Static var elements should be modeled with accurate reactive power (leading/lagging) limits. An accurate voltage set point and equipment status, as well as any associated fixed/switched shunt equipment should also be modeled based on actual seasonal operation.

24. **HVDC** – All HVDC transmission facilities must be represented with a sufficiently detailed model to simulate its expected behavior.

25. **Interchange Tolerances** – In a solved case, the actual interchange for any area containing a Type 3 (swing) bus should be within 25 MW of the specified desired interchange value. (Note that PSS®E does not enforce the interchange deviation for areas containing Type 3 buses.)

26. **Scheduled Interchange vs. Scheduled Tie Line Flows** – Scheduled interchange between areas directly connected solely by ties with flows controlled to a specific schedule (PAR-controlled AC or DC) should be consistent with the PAR or DC scheduled flows.

17. **CAUSES OF NON-CONVERGENCE AND PROBLEMS IN MERGED BASE CASE MODELS**

A. **CAUSES OF NON-CONVERGENCE**

1. A line whose impedance is very small as compared to that of a line connected in series with it.

 Solution: If possible, add impedance of short and long series-connected lines and represent as one line.

2. Tie lines are missing because they were not picked up by model creation or tie lines are connected incorrectly.

3. An impedance or susceptance value whose magnitude is extremely large. A decimal point may have been misplaced, or large cutoff impedance was specified during equivalencing.

4. A system’s regulating (slack) bus is in a different system. This is probably due to an incorrect data entry in changing a model.

5. An isolated system (island) has been inadvertently created. Voltage phase divergence will be flagged immediately and the program will stop calculating after the first iteration.

6. Unrealistic tap changing transformer tap limits.

7. Radical system is very large.

8. Poor voltage regulation such as:

 a. Unequal voltage schedules at generating units connected by a low impedance line.

 Solution: Do not regulate a radial bus; hold MVAR output of a radial bus constant at the value obtained in last iteration.

 b. Regulation of a radial line at both ends at unequal voltages.

 c. Conflicting voltage regulation.

 d. Unreasonably small voltage range for switched shunts.

 e. Remote regulation of more than one bus away.

10. Not solvable from flat start.

11. Fictitious regulation of buses.

12. Extremely low voltage schedules.

13. Not following the approved MMWG sign convention for phase shifters (see page 3 of this Appendix) or not adhering to minimum MW tolerance for phase-shifting-under load transformers.

14. Zero or very low reactance branches. Minimum reactance = 0.0001 per unit.
15. Inconsistent representation of delta-wye transformers, typically by two companies interconnected at both voltage levels.
B. PROBLEMS
1. Duplicate bus names in an area(s).
2. The data will not permit steady-state calculations, such as:
 a. Zero voltage regulation, resulting in division by zero. Notify Regional Coordinator.
 b. Interchange does not net to zero. Save the data but do not calculate until the Coordinator has given instructions for correcting the data.
 c. High R/X ratios in equivalent area causing non-convergence. Delete line or reduce ratio.
3. Missing tie lines. These tie lines may or may not be in the base case model. The program flags the tie lines as missing because of its tie line checking routine. A review of the data dump will verify the inclusion of a tie line if it is included and has been flagged as missing. Likewise, the validity of the error message will be verified by a review of the data dump.
4. Phase Shifting Transformers
 a. The first-named bus in the branch data is taken as the “From” bus and the second-named bus is taken as the “To” bus. The “From” bus is also taken as the tapped bus.
 b. If phase shift angle is specified in CDF as positive, \(\theta_A < \theta_B \).
 c. Assuming \(\theta_A \) and \(\theta_B \) stay relatively constant for small changes, an increase in this positive phase shift angle will tend to change the voltage phase angle of Bus A in a lagging direction relative to that for Bus B. This causes an incremental increase in real power flow in the direction of B to C regardless of the direction of the initial real power flowing through the transformer.
 d. A desired positive real power flow into the phase shifting transformer at the “From” bus or tapped bus is specified with positive real power limits.
 e. The “Controlled Bus” specified should be the same as the tapped bus to be consistent and avoid confusion.

Note: The PTI PSS®E steady-state program currently being used by AEP to process MMWG models requires the above convention. Therefore, it is desirable that all phase shifter models sent to AEP conform to this convention. If the data submitted does not conform to the above convention, AEP must be notified so that appropriate corrections can be made.
18. PROCEDURES FOR INITIALIZATION AND NO-DISTURBANCE CHECKS OF LIBRARY DYNAMICS CASES

Note: PSS®E activities relevant to the following steps are shown in brackets.

1. Create a converged load flow case with as few limit violations and questionable data items as possible.
 A. Solve the case after each set of major changes [FNSL, FDNS, SOLV, or MSLV] and save it to minimize rework if a change has unintended consequences. If all of the following constraints are satisfied, convergence within tolerance, even from a flat start, should not take more than the default number of iterations. However, there is usually no reason to use a flat start if the case being updated was solved.

 B. Generator checks using a list of all data to spot unrealistic, typically default, generator data values. [LIST, option 5] There is no checking activity listing only machines having suspect values of the following
 i. Machine MVA on the default base of 100. Although models will work if all load flow and dynamic model parameters are entered on this basis, limit checks will not work correctly.
 ii. Source impedance of 1.0 p.u. on machine MVA base. This value is substantially higher than normal for synchronous machines.
 iii. Source impedances equal to or less than zero. These will cause generator conversion to fail.
 iv. Real and/or reactive power limits of +9999 or -9999.

 C. Checks which report abnormal values
 i. Branch flows exceeding normal ratings. [RATE or OLTL and OLTR]
 ii. Bus voltages below 0.95 p.u. except in the case of generator terminal voltage buses connected to the transmission bus by a step-up transformer with a tap ratio significantly off nominal. [VCHK]
 iii. Overloaded generators. [GEOL]. Note that this activity checks machine output against the machine MVA base, MBASE, not against PMAX, PMIN, OMax, and QMIN.
 iv. Branches with extreme impedances or tap ratios [BRCH]. Suggested options are:
 1. Small impedance. Note that very small impedances can be treated as zero impedance ties by selection of parameter THRSHZ and these will not be a problem.
 2. Negative reactance. These are typically found in Y representations of three winding transformers. Solution activity SOLV may not be used on cases containing such branches and MSLV may not be used if they are present at a Type 2 or 3 (generator) bus.
 3. Charging. Values exceeding the default upper check limit (5.0 p.u.) are normal on long EHV lines but others should be checked. Negative values are occasionally used for magnetizing impedance on transformers but this usage is not recognized in the PSS®E Program Operation Manual.
 4. Parallel transformers. Minor tap ratio differences may simply reflect field conditions, but differences exceeding one step should be checked to guard against inadvertent errors.
 5. High tap ratios.

 D. Interactive checks: the user is asked to enter new value(s) for each exception, or hit “carriage return” for no change.
i. Generators dispatched outside their real power limits [SCAL]. Scaling areas or zones should be used cautiously if generators having default PMAX (+9999) and PMIN (-9999) limits are present.

ii. Inconsistent targets at a bus whose voltage is controlled by two or more system elements: local generation, switched shunts, and voltage controlling transformers [CNTB]. There is a tendency not to recognize different summer and winter operating strategies where appropriate.

iii. Questionable voltage or flow controlling transformer parameters [TPCH]

iv. Buses in “islands” not containing a system swing bus [TREE]. Note that there can be multiple islands each of which does contain a system swing bus, with DC links connecting them.

2. To confine the initialization to a subset of the original load flow, for instance the areas comprising one region, proceed as follows.

 A. Create a raw data file containing only the area(s) of interest [RAWD, AREA].
 B. Read in the raw data file just created [READ].
 C. If no system swing bus is in the area kept, change the type of a generator bus from 2 to 3 to make it the system swing bus [CHNG].
 D. Locate any islands created by the subsetting operation and either connect or drop them [TREE].
 E. Replace flows on tie lines severed by the subsetting operation with equivalent loads (positive for flows out, negative for flows in) [BGEN].

3. Net generation with load at any buses where a generator(s) exists for which no dynamic models are available [GNET].

4. Convert the generators in the load flow [CONG], solve [ORDR, FACT, TYSL] and save converted case [SAVE].

5. From the dynamics entry point, read in the dynamic model data file [DYRE] (load flow case must also be in memory).

 A. Specify CONEC, CONET, and COMPILE files.
 B. It is highly desirable to include a SYSANG model in the DYRE file, although this makes it mandatory to recompile even if no user models are included. This model provides six monitoring output channels, which can be used to scan a no-disturbance simulation for stability without attempting to select individual machines to monitor.

6. Concatenate FLECS code for user models onto CONEC or CONET files.

7. Compile.

9. Restart from the dynamics entry point, this time using “user dynamics”.

 A. Read converted load flow [CASE].
 B. Read in the dynamic data file [DYRE].
 C. Specify channels to record appropriate states and variables as simulation outputs [CHAN]. Include SYSANG variables if this model was included in the dynamics data file as suggested above.
 D. Check consistency of dynamic models [DYCH, option 1].
 E. Initialize dynamic simulation [STRT]. The output of this activity may have several important parts and it is desirable to keep a log file for reference while debugging.

i. Warning messages for

 1. Generators in the load flow for which there is no active machine model.
 2. Models, usually of excitation systems or governors, initialized out of limits.
 3. The number of iterations required to initialize the initial-conditions steady-state.
ii. A tabulation of conditions at each online machine
 1. Terminal voltage
 2. Exciter output voltage
 3. Real and reactive power output
 4. Power factor
 5. Machine angle in degrees
 6. Direct and quadrature axis currents on machine base.

iii. A diagnosis of initial conditions, either
 1. "Initial conditions check OK", or
 2. A listing of suspect initial conditions generally states whose time derivative
 is not "small" (relative to the value of the state). These may be caused by
 inconsistencies between the real and reactive power scheduled for a unit by
 the load flow (including automatic changes in reactive power to hold bus
 voltage at a target level) or by parameter errors.

iv. For models flagged in steps i) through iii), consider using activity [DOCU] to
 identify parameters which may be causing problems. This activity will also give
 the automatically calculated values of exciter model parameters, which are
 derived if the corresponding parameters, as read in, are 0. Other warnings may
 indicate errors in the steady-state model.

F. Modify model parameters or the load flow as appropriate and repeat steps up to this
 point until there are no warning messages nor suspect initial conditions.

10. Record a snapshot [SNAP] of dynamic state values prior to application of any
 disturbance or simulation of any time period.

11. Simulate undisturbed operation [RUN] for at least 20 seconds. Printing the convergence
 monitor [RUN,CM] can indicate where problems are, but considerably increases the
 amount of output.

12. Stop simulation. Review output values in tabular and/or graphical form.

13. Validate exciter model response to a step change in set point. [ESTR] and [ERUN]. Field
 voltage and terminal voltage will be output for each exciter model and may be reviewed
 in tabular or graphical form. Satisfactory response is indicated if the terminal voltage
 settles to the specified value within a few seconds, if the field voltage is reasonable, and
 the response is free of
 A. Excessive overshoot
 B. Sustained oscillations
 C. High frequency noise (may be caused by using too long a simulation time step.)
 D. Unexpected discontinuities in the output variables or their derivatives (except IEEE
 Type 4 "non-continuous" regulator models).

14. Validate governor model response to a step change. [GSTR] and [GRUN]. Mechanical
 power and speed deviation will be output for each shaft where a governor model is
 present and may be reviewed in tabular or graphical form. Models of cross-compound
 unit governors specify two machines so four output variables are used. Steam or
 combustion turbine unit governors may require up to 20 seconds to attain equilibrium,
 and hydro units even longer, even if they are well tuned. Satisfactory response is
 indicated if speed deviation settles to approximately (- K) = (-1 / R), mechanical power
 to (1-1/K) times the specified value, and the response variables are free of excessive
 overshoot or sustained oscillations.

19. Compliance
A. MDWG Model Development Procedure Manual
 Note: The latest document can be found on SPP.org

B. MDWG Power flow, Short Circuit, and Dynamic model schedule and list
 Note: The latest document can be found on SPP.org

C. Data Submittal Forms (This is a separate document)
 Note: The latest document is posted with every model set

D. MDWG Procedure for late or no data submittal (FUTURE)
APPENDIX I

MASTER TIE LINE FILE DATA FIELDS

Branch Data Fields

- In Service Date
- Out Service Date
- From Region Name
- From Area#
- From Area Name
- From Bus#
- From Bus Name
- From Bus kV
- To Region Name
- To Area#
- To Area Name
- To Bus#
- To Bus Name
- To Bus kV
- Metered End (F,T)
- CKT
- R
- X
- B
- Summer Rating A
- Summer Rating B
- Summer Rating C
- Winter Rating A
- Winter Rating B
- Winter Rating C
- GI (pu)
- BI (pu)
- GI (pu)
- BI (pu)
- STATUS (0,1)
- LEN [mi]
- Owner 1
- Fraction 1
- Owner 2
- Fraction 2
- Owner 3
- Fraction 3
- Owner 4
- Fraction 4
MASTER TIE LINE FILE DATA FIELDS
continued

Two Winding Transformer Data Fields

In Service Date,
Out Service Date,
From Bus Region Name,
From Bus Area#,
From Bus Area Name,
From Bus Number,
From Bus Name,
From Bus kV,
To Bus Region Name,
To Bus Area#,
To Bus Area Name,
To Bus Number,
To Bus Name,
To Bus kV,
Tapped Side,
CKT,
CW,
CZ,
CM,
MAG1,
MAG2,
Metered Side,
NAME,
STATUS (0,1),
Owner 1,
Fraction 1,
Owner 2,
Fraction 2,
Owner 3,
Fraction 3,
Owner 4,
Fraction 4,
R1-2,
X1-2,
SPhase1-2,
WindV1,
NomV1,
Ang1,
Summer Rating A1,
Summer Rating B1,
Summer Rating C1,
Winter Rating A1,
Winter Rating B1,
Winter Rating C1,
MASTER TIE LINE FILE DATA FIELDS
continued

Two Winding Transformer Data Fields - continued

COD1,
Volt Control Bus Region Name,
Volt Control Bus Area Number,
Volt Control Bus Area Name,
Volt Control Bus Number (CONT1),
Volt Control Bus Name,
Volt Control Bus kV,
RMA1,
RM11,
VMA1,
VM11,
NTP1,
TAB1,
CR1,
CX1,
WindV2,
NomV2
MASTER TIE LINE FILE DATA FIELDS
continued

Three Winding Transformer Data Fields

In Service Date,
Out Service Date,
Winding 1 Region Name,
Winding 1 Area#,
Winding 1 Area Name,
Winding 1 Bus#,
Winding 1 Bus Name,
Winding 1 Bus kV,
Winding 2 Region Name,
Winding 2 Area#,
Winding 2 Area Name,
Winding 2 Bus#,
Winding 2 Bus Name,
Winding 2 Bus kV,
Winding 3 Region Name,
Winding 3 Area#,
Winding 3 Area Name,
Winding 3 Bus#,
Winding 3 Bus Name,
Winding 3 Bus kV,
CKT,
CW,
CZ,
CM,
MAG1,
MAG2,
NMETR(1,2,3),
NAME,
STATUS(0,1),
Owner 1,
Fraction 1,
Owner 2,
Fraction 2,
Owner 3,
Fraction 3,
Owner 4,
Fraction 4,
R1-2,
X1-2,
SBase1-2,
R2-3,
X2-3,
SBase2-3,
R3-1,
MASTER TIE LINE FILE DATA FIELDS
continued

Three Winding Transformer Data Fields - continued

- X3-1
- SBASE3-1
- VMSTAR
- ANSTAR
- WindV1
- NomV1
- Ang1
- Summer Rating A1
- Summer Rating B1
- Summer Rating C1
- Winter Rating A1
- Winter Rating B1
- Winter Rating C1
- COD1
- Control Bus 1 Region
- Control Bus 1 Area Number
- Control Bus 1 Area Name
- Control Bus #1(CONT1)
- Control Bus Name
- Control Bus KV
- RMA1
- RMI1
- VMA1
- VM11
- NTP1
- TAB1
- CR1
- CX1
- WindV2
- NomV2
- Ang2
- Summer Rating A2
- Summer Rating B2
- Summer Rating C2
- Winter Rating A2
- Winter Rating B2
- Winter Rating C2
- COD2
- Control Bus 2 Region
- Control Bus 2 Area Number
- Control Bus 2 Area Name
- Cont2
- Control Bus 2 Name
- Control Bus 2 KV
- RMA2
Three Winding Transformer Data Fields - continued

MASTER TIE LINE FILE DATA FIELDS

continued

Two Terminal DC Tie Data Fields

In Service Date,
Out Service Date,
I,
MDC,
RDC,
SETVL,
VSCHD,
VCMOD (1,0),
RCMP,
DELTI,
METER (R,I),
DCVMIN,
CCITMX,
CCGACC,
IPR REGION NAME,
IPR AREA#,
IPR AREA NAME,
IPR Bus#,
IPR BUS NAME,
IPR BUS kV,
NBR,
ALFMX,
ALFMN,
RCR,
XCR,
EBASR,
TRR,
TAPR,
TMXR,
TMNR,
STPR,
ICR REGION NAME,
ICR AREA#,
ICR AREA NAME,
ICR BUS#,
ICR BUS NAME,
ICR BUS kV,
IFR REGION NAME,
IFR AREA#,
IFR AREA NAME,
IFR BUS#,
IFR BUS NAME,
IFR BUS kV,
ITR REGION NAME,
ITR AREA#,
MASTER TIE LINE FILE DATA FIELDS
(continued)

Two Terminal DC Tie Data Fields

ITF AREA NAME,
ITR BUS#,
ITR BUS NAME,
ITR BUS KV,
IDR,
XCAPR,
IPI REGION NAME,
IPI AREA#,
IPI AREA NAME,
IPI Bus#,
IPI BUS NAME,
IPI BUS KV,
NHL,
GAMMX,
GAMMN,
RCI,
XCI,
EBASI,
TRI,
TAPI,
TMXI,
TMNI,
STPI,
ICI REGION NAME,
ICI AREA#,
ICI AREA NAME,
ICI BUS#,
ICI BUS NAME,
ICI BUS KV,
IFI REGION NAME,
IFI AREA#,
IFI AREA NAME,
IFI BUS#,
IFI BUS NAME,
IFI BUS KV,
ITI REGION NAME,
ITI AREA#,
ITI AREA NAME,
ITI BUS#,
ITI BUS NAME,
ITI BUS KV,
IDI,
XCAPI

Notes: (1) The data formats must be compatible with PSS®E input requirements.
(2) The in-service and out-of-service dates will be expressed as mm/dd/yyyy.
Appendix II
NUMBER RANGE ASSIGNMENTS FOR ERAG MMWG Steady-State Data

<table>
<thead>
<tr>
<th>Region</th>
<th>Bus Numbers</th>
<th>Area Numbers</th>
<th>Zone Numbers</th>
<th>Owner Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entire System</td>
<td>100,000 – 899,999</td>
<td>100 to 899</td>
<td>100 to 1,899</td>
<td>100 to 1,199</td>
</tr>
<tr>
<td>NPCC</td>
<td>100,000 to 199,999</td>
<td>100 to 199</td>
<td>100 to 199 and 1,100 to 1,199</td>
<td>100 to 199</td>
</tr>
<tr>
<td>RFC</td>
<td>200,000 to 299,999</td>
<td>200 to 299</td>
<td>200 to 299 and 1,200 to 1,299 and 1,800 to 1,899</td>
<td>200 to 299</td>
</tr>
<tr>
<td>SERC</td>
<td>300,000 to 399,999</td>
<td>300 to 399</td>
<td>300 to 399 and 1,300 to 1,399</td>
<td>300 to 399</td>
</tr>
<tr>
<td>FRCC</td>
<td>400,000 – 499,999</td>
<td>400 to 499</td>
<td>400 to 499 and 1,400 to 1,499</td>
<td>400 to 499</td>
</tr>
<tr>
<td>SPP</td>
<td>50,000 to 599,999</td>
<td>500 to 599</td>
<td>500 to 599 and 1,500 to 1,599</td>
<td>500 to 599 and 800 to 899</td>
</tr>
<tr>
<td>MRO</td>
<td>600,000 to 699,999</td>
<td>600 to 699</td>
<td>600 to 699 and 1,600 to 1,699</td>
<td>600 to 699</td>
</tr>
<tr>
<td>ERCOT (future)</td>
<td>700,000 to 799,999</td>
<td>700 to 799</td>
<td>700 to 799 and 1,700 to 1,799</td>
<td>700 to 799</td>
</tr>
</tbody>
</table>

1 Area or zone number 1 is sometimes used as a default when the number is omitted by mistake. Its use to number an actual area should be avoided.
APPENDIX III

UTILIZED IMPEDANCE CORRECTION TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Tap or Angle</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-60</td>
<td>0.336</td>
<td>-26.0</td>
<td>0.172</td>
<td>-15.4</td>
<td>0.124</td>
<td>-12.5</td>
<td>0.106</td>
<td>-7.6</td>
<td>0.082</td>
<td>-3.7</td>
<td>0.064</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-70</td>
<td>0.331</td>
<td>-26.0</td>
<td>0.172</td>
<td>-16.0</td>
<td>0.138</td>
<td>-12.5</td>
<td>0.106</td>
<td>-8.3</td>
<td>0.082</td>
<td>-4.0</td>
<td>0.072</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1.000</td>
<td>-26.0</td>
<td>0.172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-152</td>
<td>0.335</td>
<td>-26.0</td>
<td>0.172</td>
<td>-15.4</td>
<td>0.124</td>
<td>-12.5</td>
<td>0.106</td>
<td>-7.6</td>
<td>0.082</td>
<td>-3.7</td>
<td>0.064</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1.000</td>
<td>-26.0</td>
<td>0.172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-22</td>
<td>0.335</td>
<td>-26.0</td>
<td>0.172</td>
<td>-15.4</td>
<td>0.124</td>
<td>-12.5</td>
<td>0.106</td>
<td>-7.6</td>
<td>0.082</td>
<td>-3.7</td>
<td>0.064</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1.000</td>
<td>-26.0</td>
<td>0.172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-25</td>
<td>0.335</td>
<td>-26.0</td>
<td>0.172</td>
<td>-15.4</td>
<td>0.124</td>
<td>-12.5</td>
<td>0.106</td>
<td>-7.6</td>
<td>0.082</td>
<td>-3.7</td>
<td>0.064</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1.000</td>
<td>-26.0</td>
<td>0.172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-25</td>
<td>0.335</td>
<td>-26.0</td>
<td>0.172</td>
<td>-15.4</td>
<td>0.124</td>
<td>-12.5</td>
<td>0.106</td>
<td>-7.6</td>
<td>0.082</td>
<td>-3.7</td>
<td>0.064</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1.000</td>
<td>-26.0</td>
<td>0.172</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Formatted: Space After: 0 pt, Line spacing: single
APPENDIX IV
UTILIZED DC LINES

<table>
<thead>
<tr>
<th>DC Line Number</th>
<th>Region</th>
<th>Name</th>
<th>DC Line Number</th>
<th>Region</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MRO</td>
<td></td>
<td>26</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MRO</td>
<td></td>
<td>27</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MRO</td>
<td></td>
<td>28</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MRO</td>
<td></td>
<td>29</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MRO</td>
<td></td>
<td>30</td>
<td>RFC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MRO</td>
<td></td>
<td>31</td>
<td>RFC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MRO</td>
<td></td>
<td>32</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MRO</td>
<td></td>
<td>33</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MRO</td>
<td></td>
<td>34</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MRO</td>
<td></td>
<td>35</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NPCC</td>
<td></td>
<td>36</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NPCC</td>
<td></td>
<td>37</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>NPCC</td>
<td></td>
<td>38</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>NPCC</td>
<td></td>
<td>39</td>
<td>NPCC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>NPCC</td>
<td></td>
<td>40</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>NPCC</td>
<td></td>
<td>41</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>NPCC</td>
<td></td>
<td>42</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>NPCC</td>
<td></td>
<td>43</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>NPCC</td>
<td></td>
<td>44</td>
<td>SPP</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>NPCC</td>
<td></td>
<td>45</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>NPCC</td>
<td></td>
<td>46</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>NPCC</td>
<td></td>
<td>47</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>NPCC</td>
<td></td>
<td>48</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>NPCC</td>
<td></td>
<td>49</td>
<td>MRO</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>NPCC</td>
<td></td>
<td>50</td>
<td>Unused</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX V
SYSTEM CODES FOR USE IN ERAG MMWG STEADY-STATE DATA

<table>
<thead>
<tr>
<th>NPCC – Northeast Power Coordination Council</th>
<th>RFC – Reliability First Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area #</td>
<td>ID</td>
</tr>
<tr>
<td>101</td>
<td>ISO-NE</td>
</tr>
<tr>
<td>102</td>
<td>NYISO</td>
</tr>
<tr>
<td>103</td>
<td>IESO</td>
</tr>
<tr>
<td>104</td>
<td>TE</td>
</tr>
<tr>
<td>105</td>
<td>NB</td>
</tr>
<tr>
<td>106</td>
<td>NS</td>
</tr>
<tr>
<td>107</td>
<td>CORNWALL</td>
</tr>
<tr>
<td>201</td>
<td>AP</td>
</tr>
<tr>
<td>202</td>
<td>FE</td>
</tr>
<tr>
<td>205</td>
<td>AEP</td>
</tr>
<tr>
<td>206</td>
<td>OVEC</td>
</tr>
<tr>
<td>207</td>
<td>HE</td>
</tr>
<tr>
<td>208</td>
<td>DEM</td>
</tr>
<tr>
<td>209</td>
<td>DAY</td>
</tr>
<tr>
<td>210</td>
<td>SISG</td>
</tr>
<tr>
<td>215</td>
<td>DLCO</td>
</tr>
<tr>
<td>216</td>
<td>IPL</td>
</tr>
<tr>
<td>217</td>
<td>NIPS</td>
</tr>
<tr>
<td>218</td>
<td>METC</td>
</tr>
<tr>
<td>219</td>
<td>ITCT</td>
</tr>
<tr>
<td>220</td>
<td>IPRV</td>
</tr>
<tr>
<td>222</td>
<td>CE</td>
</tr>
<tr>
<td>225</td>
<td>PIM</td>
</tr>
<tr>
<td>226</td>
<td>PEN Elec</td>
</tr>
<tr>
<td>227</td>
<td>METED</td>
</tr>
<tr>
<td>228</td>
<td>LCP & L</td>
</tr>
<tr>
<td>229</td>
<td>PPL</td>
</tr>
<tr>
<td>230</td>
<td>PECO</td>
</tr>
<tr>
<td>231</td>
<td>PSE & G</td>
</tr>
<tr>
<td>232</td>
<td>BG&E</td>
</tr>
<tr>
<td>233</td>
<td>PEPCO</td>
</tr>
<tr>
<td>234</td>
<td>AE</td>
</tr>
<tr>
<td>235</td>
<td>DP & L</td>
</tr>
<tr>
<td>236</td>
<td>UGI</td>
</tr>
<tr>
<td>237</td>
<td>RECO</td>
</tr>
<tr>
<td>295</td>
<td>WEC</td>
</tr>
<tr>
<td></td>
<td>ESE</td>
</tr>
<tr>
<td>Area #</td>
<td>ID</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>314</td>
<td>BREC</td>
</tr>
<tr>
<td>320</td>
<td>EKPC</td>
</tr>
<tr>
<td>330</td>
<td>AECI</td>
</tr>
<tr>
<td>331</td>
<td>BCA</td>
</tr>
<tr>
<td>332</td>
<td>LAGN</td>
</tr>
<tr>
<td>333</td>
<td>CWLD</td>
</tr>
<tr>
<td>334</td>
<td>WESTMEMP</td>
</tr>
<tr>
<td>335</td>
<td>CONWAY</td>
</tr>
<tr>
<td>336</td>
<td>BUBA</td>
</tr>
<tr>
<td>337</td>
<td>PUPP</td>
</tr>
<tr>
<td>338</td>
<td>DERS</td>
</tr>
<tr>
<td>339</td>
<td>DENL</td>
</tr>
<tr>
<td>340</td>
<td>CPLE</td>
</tr>
<tr>
<td>341</td>
<td>CPLW</td>
</tr>
<tr>
<td>342</td>
<td>DUKE</td>
</tr>
<tr>
<td>343</td>
<td>SEGA</td>
</tr>
<tr>
<td>344</td>
<td>SCPSA</td>
</tr>
<tr>
<td>345</td>
<td>DVP</td>
</tr>
<tr>
<td>346</td>
<td>SOUTHERN</td>
</tr>
<tr>
<td>347</td>
<td>TVA</td>
</tr>
<tr>
<td>349</td>
<td>SMEPA</td>
</tr>
<tr>
<td>350</td>
<td>AEC</td>
</tr>
<tr>
<td>351</td>
<td>EES</td>
</tr>
<tr>
<td>352</td>
<td>YAD</td>
</tr>
<tr>
<td>353</td>
<td>SEHA</td>
</tr>
<tr>
<td>354</td>
<td>SERU</td>
</tr>
<tr>
<td>355</td>
<td>SETH</td>
</tr>
<tr>
<td>356</td>
<td>AMMO</td>
</tr>
<tr>
<td>357</td>
<td>AMIL</td>
</tr>
<tr>
<td>360</td>
<td>CWLP</td>
</tr>
<tr>
<td>361</td>
<td>SIPC</td>
</tr>
<tr>
<td>362</td>
<td>EEI</td>
</tr>
</tbody>
</table>
FRCC Florida Reliability Coordination Council

<table>
<thead>
<tr>
<th>Area # ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>FPL Florida Power & Light</td>
</tr>
<tr>
<td>402</td>
<td>PEF Progress Energy Florida</td>
</tr>
<tr>
<td>403</td>
<td>FTP Fort Pierce Utility Authority</td>
</tr>
<tr>
<td>404</td>
<td>GVL Gainesville Regional Utility</td>
</tr>
<tr>
<td>405</td>
<td>HST City of Homestead</td>
</tr>
<tr>
<td>406</td>
<td>JEA Jacksonville Electric Authority</td>
</tr>
<tr>
<td>407</td>
<td>KEY City of Key West</td>
</tr>
<tr>
<td>409</td>
<td>LWU City of Lake Worth Utility</td>
</tr>
<tr>
<td>410</td>
<td>NSB Utilities Commission of New Smyrna Beach</td>
</tr>
<tr>
<td>411</td>
<td>FMPP Florida Municipal Power Pool</td>
</tr>
<tr>
<td>412</td>
<td>SEC Seminole Electric Cooperative</td>
</tr>
<tr>
<td>414</td>
<td>STK City of Starke</td>
</tr>
<tr>
<td>415</td>
<td>TAL City of Tallahassee</td>
</tr>
<tr>
<td>416</td>
<td>TECO Tampa Electric Company</td>
</tr>
<tr>
<td>417</td>
<td>FMPFMPA / City of Vero Beach</td>
</tr>
<tr>
<td>418</td>
<td>NUG Non-Utility Generators</td>
</tr>
<tr>
<td>419</td>
<td>RCU Reedy Creek Energy Services, INC</td>
</tr>
<tr>
<td>421</td>
<td>TEC Treasure Coast Energy Center</td>
</tr>
<tr>
<td>426</td>
<td>OSC Osceola at Holopaw (PEF)</td>
</tr>
<tr>
<td>427</td>
<td>OLEANDER Oleander IPP at Brevard (FPL)</td>
</tr>
<tr>
<td>428</td>
<td>CALPINE Calpine at Recker (TECO)</td>
</tr>
<tr>
<td>431</td>
<td>VAN IPS Avon Park at Vandolah (PEF)</td>
</tr>
<tr>
<td>433</td>
<td>HPS Hardee Power Station (TECO)</td>
</tr>
<tr>
<td>436</td>
<td>DESOTOGEN Desoto Generation IPP at Whidden (FPL)</td>
</tr>
<tr>
<td>438</td>
<td>IPP-REL Reliant at Indian River (FMPP)</td>
</tr>
<tr>
<td>Area #</td>
<td>ID</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>502</td>
<td>CELE</td>
</tr>
<tr>
<td>503</td>
<td>LAFA</td>
</tr>
<tr>
<td>504</td>
<td>LEPA</td>
</tr>
<tr>
<td>505</td>
<td>ALEX</td>
</tr>
<tr>
<td>507</td>
<td>RAYB</td>
</tr>
<tr>
<td>508</td>
<td>NTEC</td>
</tr>
<tr>
<td>509</td>
<td>SRGT</td>
</tr>
<tr>
<td>511</td>
<td>AREC</td>
</tr>
<tr>
<td>513</td>
<td>CLWL</td>
</tr>
<tr>
<td>514</td>
<td>MEAM</td>
</tr>
<tr>
<td>515</td>
<td>SWPA</td>
</tr>
<tr>
<td>520</td>
<td>AEPW</td>
</tr>
<tr>
<td>522</td>
<td>KAMO</td>
</tr>
<tr>
<td>523</td>
<td>GRDA</td>
</tr>
<tr>
<td>524</td>
<td>OKGE</td>
</tr>
<tr>
<td>525</td>
<td>WFEC</td>
</tr>
<tr>
<td>526</td>
<td>SPS</td>
</tr>
<tr>
<td>527</td>
<td>OMPA</td>
</tr>
<tr>
<td>531</td>
<td>MIDW</td>
</tr>
<tr>
<td>534</td>
<td>SUNC</td>
</tr>
<tr>
<td>536</td>
<td>WEFE</td>
</tr>
<tr>
<td>537</td>
<td>SIKE</td>
</tr>
<tr>
<td>539</td>
<td>WEPL</td>
</tr>
<tr>
<td>540</td>
<td>MIPI</td>
</tr>
<tr>
<td>541</td>
<td>KAPL</td>
</tr>
<tr>
<td>542</td>
<td>KACY</td>
</tr>
<tr>
<td>544</td>
<td>EMDE</td>
</tr>
<tr>
<td>545</td>
<td>INDN</td>
</tr>
<tr>
<td>546</td>
<td>SPRM</td>
</tr>
</tbody>
</table>
MRO – Midwest Reliability Organization

<table>
<thead>
<tr>
<th>Area # ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>XEL Xcel Energy North</td>
</tr>
<tr>
<td>600</td>
<td>MUNI Municipal data from Xcel Energy</td>
</tr>
<tr>
<td>600</td>
<td>MMPA MMPA Municipal data from Xcel Energy</td>
</tr>
<tr>
<td>600</td>
<td>CMMPA CMMFA Municipal data from Xcel Energy</td>
</tr>
<tr>
<td>608</td>
<td>MP Minnesota Power & Light</td>
</tr>
<tr>
<td>613</td>
<td>SMMPA Southern Minnesota Municipal Power Association</td>
</tr>
<tr>
<td>615</td>
<td>GRE Great River Energy</td>
</tr>
<tr>
<td>620</td>
<td>OTP Otter Tail Power Company</td>
</tr>
<tr>
<td>627</td>
<td>ALTW Alliant Energy West</td>
</tr>
<tr>
<td>633</td>
<td>MPW Muscatine Power & Water</td>
</tr>
<tr>
<td>635</td>
<td>MEC MidAmerican Energy</td>
</tr>
<tr>
<td></td>
<td>CBPC CBPC Municipal data from MEC</td>
</tr>
<tr>
<td></td>
<td>RPGI RPGI Municipal data from MEC</td>
</tr>
<tr>
<td></td>
<td>IAMU IAMU Municipal data from MEC</td>
</tr>
<tr>
<td></td>
<td>MMEC MEC Municipal data from MEC (AMES,CFU,etc.)</td>
</tr>
<tr>
<td>640</td>
<td>NPPD Nebraska Public Power District</td>
</tr>
<tr>
<td>645</td>
<td>OPDD Omaha Public Power District</td>
</tr>
<tr>
<td>650</td>
<td>LES Lincoln Electric System, NE</td>
</tr>
<tr>
<td>652</td>
<td>WAPA Western Area Power Administration</td>
</tr>
<tr>
<td></td>
<td>MPC Minnkota Power Cooperative, Inc</td>
</tr>
<tr>
<td></td>
<td>BEPC Basin Electric Power Cooperative</td>
</tr>
<tr>
<td></td>
<td>NWPS Northwestern Public Service</td>
</tr>
<tr>
<td></td>
<td>MRES Missouri River Energy Services</td>
</tr>
<tr>
<td>661</td>
<td>MDU Montana-Dakota Utilities Co.</td>
</tr>
<tr>
<td>667</td>
<td>MHEB Manitoba Hydro</td>
</tr>
<tr>
<td>672</td>
<td>SPC Saskatchewan Power Co.</td>
</tr>
<tr>
<td>680</td>
<td>DPC Dairyland Power Cooperative</td>
</tr>
<tr>
<td></td>
<td>WPPC Wisconsin Public Power Inc</td>
</tr>
<tr>
<td>694</td>
<td>ALTE Alliant Energy East (ATC)</td>
</tr>
<tr>
<td>696</td>
<td>WPS Wisconsin Public Service Corporation (ATC)</td>
</tr>
<tr>
<td></td>
<td>CWP Consolidated Water Power Company (ATC)</td>
</tr>
<tr>
<td></td>
<td>MEWD Marshfield Electric and Water Company (ATC)</td>
</tr>
<tr>
<td></td>
<td>MPU Manitowoc Public Utilities (ATC)</td>
</tr>
<tr>
<td>697</td>
<td>MGE Madison Gas and Electric Company (ATC)</td>
</tr>
<tr>
<td>698</td>
<td>UPPC Upper Peninsula Power Company (ATC)</td>
</tr>
</tbody>
</table>

ERCOT & WECC

<table>
<thead>
<tr>
<th>Area # ID</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>ERCOT Electric Reliability Council of Texas, Inc</td>
</tr>
<tr>
<td>800</td>
<td>WECC Western Electricity Coordinating Council</td>
</tr>
</tbody>
</table>

Notes:
- **MRO** (Midwest Reliability Organization)
- **ERCOT & WECC** (Electric Reliability Council of Texas, Western Electric Coordinating Council)
APPENDIX VI

MOD-032-1 – ATTACHMENT 1

The table, below, indicates the information that is required to effectively model the interconnected transmission system for the Near-Term Transmission Planning Horizon and Long-Term Transmission Planning Horizon. Data must be shareable on an interconnectionwide basis to support use in the Interconnection-wide cases. A Planning Coordinator may specify additional information that includes specific information required for each item in the table below. Each functional entity responsible for reporting the respective data in the table is identified by brackets “[functional entity]” adjacent to and following each data item. The data reported shall be as identified by the bus number, name, and/or identifier that is assigned in conjunction with the PC, TO, or TP.

<table>
<thead>
<tr>
<th>steady-state</th>
<th>dynamics</th>
<th>short circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(items marked with an asterisk indicate data that vary with system operating state or conditions. Those items may have different data provided for different modeling scenarios)</td>
<td>(If a user-written model(s) is submitted in place of a generic or library model, it must include the characteristics of the model, including block diagrams, values and names for all model parameters, and a list of all state variables)</td>
<td>Provide for all applicable elements in column “steady-state” [GO, RP, TO]</td>
</tr>
<tr>
<td>1. Each bus [TO]</td>
<td>1. Generator [GO, RP (for future planned resources only)]</td>
<td>a. Positive Sequence Data</td>
</tr>
<tr>
<td>a. nominal voltage</td>
<td></td>
<td>b. Negative Sequence Data</td>
</tr>
<tr>
<td>b. area, zone and owner</td>
<td>2. Excitation System [GO, RP (for future planned resources only)]</td>
<td>c. Zero Sequence Data</td>
</tr>
<tr>
<td>2. Aggregate Demand15 [LSE]</td>
<td>3. Governor [GO, RP (for future planned resources only)]</td>
<td>2. Mutual Line Impedance Data [TO]</td>
</tr>
<tr>
<td>a. real and reactive power*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. in-service status*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Generating Units16 [GO, RP (for future planned resources only)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. real power capabilities - gross maximum and minimum values</td>
<td>4. Power System Stabilizer [GO, RP (for future planned resources only)]</td>
<td>3. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling purposes. [BA, GO, LSE, TO, TSP]</td>
</tr>
<tr>
<td>b. reactive power capabilities - maximum and minimum values at real power capabilities in 3a above</td>
<td>5. Demand [LSE]</td>
<td></td>
</tr>
<tr>
<td>c. station service auxiliary load for normal plant configuration (provide data in the same manner as that)</td>
<td>6. Wind Turbine Data [GO, RP (for future planned resources only)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Photovoltaic systems [GO, RP (for future planned resources only)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Static Var Systems and FACTS [GO, TO, LSE]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. DC system models [TO]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling</td>
<td></td>
</tr>
</tbody>
</table>

15 For purposes of this attachment, the functional entity references are represented by abbreviations as follows: Balancing Authority (BA), Generator Owner (GO), Load Serving Entity (LSE), Planning Coordinator (PC), Resource Planner (RP), Transmission Owner (TO), Transmission Planner (TP), and Transmission Service Provider (TSP).

2 For purposes of this item, aggregate Demand is the Demand aggregated at each bus under item 1 that is identified by a Transmission Owner as a load serving bus. An LSE is responsible for providing this information, generally through coordination with the Transmission Owner.

3 Including synchronous condensers and pumped storage.
required for aggregate demand under item 2, above).

d. regulated bus* and voltage set point* (as typically provided by the TOP)
e. machine MVA base
f. generator step up transformer data (provide same data as that required for transformer under item 6, below)
g. generator type (hydro, wind, fossil, solar, nuclear, etc)
h. in-service status*

4. AC Transmission Line or Circuit [TO]
a. impedance parameters (positive sequence)
b. susceptance (line charging)
c. ratings (normal and emergency)*
d. in-service status*

5. DC Transmission systems [TO]

6. Transformer (voltage and phase-shifting) [TO]
a. nominal voltages of windings
b. impedance(s)
c. tap ratios (voltage or phase angle)*
d. minimum and maximum tap position limits
e. number of tap positions (for both the ULTC and NLTC)
f. regulated bus (for voltage regulating transformers)*
g. ratings (normal and emergency)*
h. in-service status*
7. Reactive compensation (shunt capacitors and reactors) [TO]
 a. admittances (MVAr) of each capacitor and reactor
 b. regulated voltage band limits* (if mode of operation not fixed)
 c. mode of operation (fixed, discrete, continuous, etc.)
 d. regulated bus* (if mode of operation not fixed)
 e. in-service status*

8. Static Var Systems [TO]
 a. reactive limits
 b. voltage set point*
 c. fixed/switched shunt, if applicable
 d. in-service status*

9. Other information requested by the Planning Coordinator or Transmission Planner necessary for modeling purposes. [BA, GO, LSE, TO, TSP]
APPENDIX VII

Modeling of Generator Parameters

1. Applicable Facilities

 The following Generators and SVCs connected to BES (100 kV and greater) or in accordance with the SPP OATT or Member OATT.
 i. All Individual units greater than 20 MVA (gross nameplate rating)
 ii. All Synchronous Condensers greater than 20 MVA (gross nameplate rating)
 iii. Generating plant/facilities greater than 75 MVA (gross aggregate nameplate rating)

2. Modeling Process for Generator Parameters

 a. The Generator parameter P_{MAX} shall be modeled as a gross seasonal maximum capability based on MOD-025-02 and SPP Planning Criteria 7.1 testing and reporting procedures.
 b. Generating plant station service and auxiliary loads shall be represented in normal plant configuration, corresponding to the load appropriate to operation of the generating plant. All station service and auxiliary load representations shall:
 i. Be modeled explicitly on the appropriate bus, corresponding to the voltage to which the auxiliary load is served. Model representations of auxiliary load connected to the generating unit bus (Figure VII-1), auxiliary load modeled with separate transformation (Figure VII-2), and auxiliary load modeled on the high-side bus of the station service transformer (Figure VII-3) are acceptable.
 ii. Be annotated as non-scalable.

17 Station service and auxiliary load shall not be netted against generating plant dispatch by reducing the P_{gen} of a unit with an amount corresponding to the plant auxiliary load.
c. Experience has shown that generating plant station service and auxiliary load may vary considerably based upon generating plant dispatch and operating conditions. Therefore, generating plant station service and auxiliary load may be modeled as aggregated or non-aggregated generating plant load, representing the total quantity of fixed and variable station service and auxiliary load.

If generating plant station service and auxiliary load is **aggregated**, the total load quantity shall properly reflect the total real and reactive loading for the generating units. The aggregated generating plant station service and auxiliary load shall use “SS” in the Load ID field (Figure VII-4a). If there are more than one aggregated generating plant station service and auxiliary load, use “Sr” in the Load ID field to delineate the multiple aggregated loads.

If generating plant station service and auxiliary load is **not aggregated**, each load quantity shall properly reflect the real and reactive loading expected during the corresponding dispatch (e.g., generating plant Pgen may be less than Pmax) and operating conditions for the generating units. Combined loads are analogous to aggregating generating plant station service and auxiliary load, with additional detail specifying the fixed and variable portions of total generating plant load (Figure VII-4b). The combined or discrete (Figure VII-4b and Figure VII-4c) load representations shall:

i. Use “Fn" in the Load ID field18 to designate fixed load quantities that do not vary with plant dispatch.

ii. Use “Vn" in the Load ID field18 to designate variable load quantities that do vary with plant dispatch.

18 "n" represents a unique numeric value. PSS/E requires each load placed at a bus to have a unique Load ID.
b. If historical data is not available, P_{GEN} values may be based on the procedure outlined in SPP Planning Criteria 7.1.5.3.7.

4. Data Exemption Process

MDWG Members requested that there be a process by which the modeled generator maximum is different from the MOD-025-02/SPP Planning Criteria testing. In accordance with Attachment 1, Section 5 of MOD-025-02, an exception process for generators that have undergone testing per MOD-025-02/SPP Planning Criteria 7.1 for these differences is as follows:

a. Member will fill out the "Exemption Form" and send it via e-mail to "Engineering Modeling" containing:
 i. Generator Name
 ii. Generator Bus Number
 iii. Requested change(s) that deviate from the MOD-025-02/SPP Planning Criteria testing.
 iv. Justification of the change if it is greater than or less than 5% of the MOD-025-02/SPP Planning Criteria testing.

SPP Modeling will process the Exemption and communicate back to the member requesting the exemption that it has been granted or if additional information is needed to process the exemption within 30 days of submission of the request.

**Effective date of sections 1 & 3 is in effect.
**Effective date of section 2 is July 1, 2016.
**Effective date of section 4 is July 1, 2016.
APPENDIX VIII - Balancing and Transactions

Background

A core principal of steady-state power flow modeling is the balance between load and generation. A system swing generating unit is a fundamental requirement of the modern formulation of the linear power flow problem (net complex power injection into nodal admittance network). In the balanced three-phase power flow formulation, a swing generator serves the imbalance of power for the entire electrical network. However, in real power systems, Balancing Authorities ensure that frequency regulation is achieved by matching generation to load within a subsection of the entire interconnected power system. Thus, in most power flow software, a vast impedance network may be segregated into groups of buses representing a model area. While typically analogous to a Balancing Authority Area or control area, the concept of a model area is straightforward; model areas allow the electrical network to be sectioned in such a way as to pool together generation, loads, and losses for the purpose of scheduling power flows throughout the electrical network. Model areas are not limited to being demarcated by physical load balancing boundaries; on the contrary, model areas are very effective at allowing individual generation and load-serving companies to properly allocate resources and demand, including transactions with other model areas. While most power flow software enforces that each generating unit inherits its model area designation from the bus to which it is connected, many modern power flow software packages allow ZIP loads and induction machine loads to be assigned to model areas that may be different than the buses to which they are connected. In this way, each generating unit and load is grouped into common balancing pools, represented by the model area (Figure 1).

19 The traditional power flow formulation is the matrix algebraic calculation of voltage phasor (magnitude and angle) at each interstitial connectivity node (bus) within an impedance network under balanced three-phase, steady-state conditions.

20 Model areas typically have a single generator designated as the area slack machine, although this is not a modeling constraint. The area slack machine is analogous to the system swing machine in that it compensates for the power imbalance within the model area, when the power flow solution is solved to respect inter-area transfers (area net interchange control).

21 ZIP refers to constant impedance, constant current, or constant power load representations, including a combination of each.
To be clear: it is inappropriate to refer to either a “generation area” or a “load area”. Instead, it is important to understand that the modeling concept of the “Area” field designated for bus, load, and generation refers to the model area to which that model object belongs. To reiterate, the model area to which a load is assigned indicates which generation resources will serve that load, independent of the model area of the bus to which that load is attached. This concept is of particular importance when interchange is used to obtain power flow solutions.

Within each model area that contains generating units, a single generating unit must be designated as the slack machine. While the dispatch (P_{gen}) of each non-slab generating unit is set to a prescribed value, the slack machine dispatch varies to compensate for any imbalance within the model area. In many cases, load obligations and transmission losses associated with delivering power to the loads within a model area may not be totally served by the capacity of resources in-service within a model area. In these situations, inter-area transfers are common, representing power purchase agreements (PPA) that reflect the firm purchase or sale of power from generation resource in one model area to another for the purpose of serving load. Similarly, intra-area transfers representing contractual or PPA obligations between resource and load owners within a model area are also common. In total, all inter- and intra-area transfers are referred to as “transactions” and must be properly accounted for to achieve power flow model balancing and accurate model area tie-line loading.

Across the entire interconnected impedance network, one-and-only-one generating unit must be designated as the system swing unit. The system swing serves any overall imbalance arising from

Figure 1. Example of interconnected model areas.
imbalanced exchanges between individual model areas. In its simplest expression, the model area designation facilitates the analysis of scheduled power flow between interconnected regions of the impedance network, which is useful for assessing conventional tie-line loading. More broadly, however, the use of model areas allows exchanges of generating resources that are intended to serve loads that may be very distant from the actual generating unit, giving rise to bilateral transactions across model area boundaries, integrated market operations, and efficient resource dispatch, as well as others.

Load is generally served by generation resources within a common model area. Likewise, both the load and the bus to which the load is connected reflect a common model area (as shown in the Area field of each). The same principle applies to transacted resource-to-load: loads that serve as the sink portion of a transacted real power quantity will reside in the model area of the sink Data Owner (and may retain the load ID of the Data Owner of the load itself). Exceptions are called pseudo-ties, representing where the resource that serves the load is outside of the model area where the load resides. Pseudo-tied loads are typically found when the Area field assigned to the load is different than the Area field of the bus, to which the load is connected, however generation pseudo-ties are possible, as well. For modeling purposes, pseudo-tie representations are permitted between two model areas within the SPP Balancing Authority (referred to an intra-SPP pseudo-tie), as well as between a model area within the SPP Balancing Authority and a model area of a non-SPP Balancing Authority (referred to an inter-SPP pseudo-tie). Intra-SPP pseudo-ties can be an effective means of differentiating which model area provides resource to unique load delivery obligations, but may be problematic if used to avoid proper resource, load, and loss accounting through model area transactions. Separately, inter-SPP pseudo-tie arrangements are typically unique contractual arrangements where firm transmission service (e.g., network services, point-to-point) has been pre-arranged to direct resource from/to an external model area, into/out of a model area where the load resides (see Figure 2). Inter-SPP pseudo-tied loads are generally an exception to the norm and the use of inter-SPP pseudo-tied loads should be justified (e.g., reference to an SPP load-balancing meter point, pseudo-tie registration in the SPP marketplace, etc.). Data Owners shall not create pseudo-tie modeling representations of load that incorporate fictitious topology; Data Owners may create pseudo-tie modeling representations of generation necessary, given the load flow software constraints.
Transactions Data Requirements

Data Owners shall submit all transactions data via the MDWG Data Submittal Workbook. Additionally, Data Owners shall:

1. Coordinate all bilateral transactions data with all Data Owners who are party to the transaction, prior to submitting the data.
2. Submit only the bilateral portion of the transaction for which the Data Owner is responsible. For example, in a bilateral transaction between two Data Owners (SPP-members), each Data Owner shall submit one half of the transaction (source or sink). In the case of a bilateral transaction between a Data Owner (SPP-member) and a non-SPP member, such as a MISO-member, the Data Owner (SPP-member) shall submit their portion (source or sink) of the bilateral transaction, upon coordination with the non-SPP member. SPP staff will then submit the non-SPP member portion (source or sink) of the bilateral transaction.
3. Review and update transactions data according to the model building schedule.
4. Load and resource transactions may be inter-area (i.e., reciprocal transaction from an SPP Market Participant to another SPP Market Participant, both within the SPP Balancing Authority Area) or external area (i.e., traditional BA-to-BA interchange). Transactional data collected by Data Owners often have tens of kilowatts precision. However, for the purposes of the ERO, or its designee, Interconnection-wide models, external net interchange schedules...
are required to be entered as whole MW quantities. Therefore, Data Owners shall submit
transaction data according to:

a. Inter-area transactions (transactions of load and resource that are wholly contained
within the SPP Balancing Authority Area) are preferred to be integer values (i.e.
whole MW); however, shall not exceed tens of kilowatt precision (i.e., two decimal
MW precision; 0.01MW).

b. External area transaction (i.e. scheduled net interchange between the SPP Balancing
Authority and an external Balancing Authority) shall be rounded to the nearest
integer (i.e. whole MW).

5. Ensure that source transactions have positive polarity, while sink transactions have negative
polarity (Figure 3 and Figure 4).

Data Owner A

Data Owner B

Source

Sink

Inter-area Bilateral transaction description

Data Owner A exports MW to Data Owner B
Data Owner B imports MW from Data Owner A

Transaction accounting in Data Submittal Workbook

<table>
<thead>
<tr>
<th>From Area</th>
<th>To Area</th>
<th>From Resp Entity Name</th>
<th>To Resp Entity Name</th>
<th>ID</th>
<th>Start</th>
<th>Stop</th>
<th>From MW</th>
<th>To MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP</td>
<td>1</td>
<td>Area 1</td>
<td>Data Owner A</td>
<td>ABC111</td>
<td>12/1/2013</td>
<td>X</td>
<td>2 Area 2</td>
<td>Data Owner B</td>
</tr>
<tr>
<td>Not SPP</td>
<td>2</td>
<td>Area 2</td>
<td>Data Owner A</td>
<td>ABC111</td>
<td>12/1/2013</td>
<td>X</td>
<td>2 Area 1</td>
<td>Data Owner B</td>
</tr>
</tbody>
</table>

Figure 3. Example of Inter-area transfer (transaction).
6. Complete the following required Data Submittal Workbook data fields for each source and sink portion of a bilateral transaction:
 a. Planning Coordinator (PC).
 b. From Area #.
 c. From Area Name.
 d. From Responsible Entity #.
 e. From Responsible Entity Name.
 f. To Area #.
 g. To Area Name.
 h. To Responsible Entity #.
 i. To Responsible Entity Name.
 j. Transaction ID.
 k. Transaction Start date.
 l. Transaction Stop date.
 m. Firm or Non-Firm Transaction.
 n. Transaction quantity (in MW) for all appropriate seasonal MDWG Model Series cases.

Data Owner A exports MW to Data Owner C
Data Owner C imports MW from Data Owner A

<table>
<thead>
<tr>
<th>Source</th>
<th>Sink</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intra-area Bilateral transaction description

Data Owner A exports MW to Data Owner C
Data Owner C imports MW from Data Owner A

Transaction accounting in Data Submittal Workbook

<table>
<thead>
<tr>
<th>PC</th>
<th>From Area #</th>
<th>From Area</th>
<th>From Resp. Entity #</th>
<th>From Resp. Entity Name</th>
<th>To Area #</th>
<th>To Area</th>
<th>To Resp. Entity #</th>
<th>To Resp. Entity Name</th>
<th>ID</th>
<th>Start</th>
<th>Stop</th>
<th>Firm</th>
<th>MDWG Model Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPP</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner A</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner C</td>
<td>XYZ112</td>
<td>12/1/2013</td>
<td>3/1/2020</td>
<td>X</td>
<td>MW</td>
</tr>
<tr>
<td>SPP</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner C</td>
<td>1</td>
<td>Area 1</td>
<td>1</td>
<td>Data Owner A</td>
<td>XYZ112</td>
<td>12/1/2013</td>
<td>3/1/2020</td>
<td>X</td>
<td>-MW</td>
</tr>
</tbody>
</table>

Figure 4: Example of Intra-area transfer (transaction).
7. When a part or all of a bilateral transaction is referenced by an Open Access Same-Time Information System (OASIS) number, used by the marketer for scheduling, enter the OASIS number in the appropriate Data Submittal Workbook field.

8. The following Data Submittal Workbook information is reserved for SPP staff usage and is not required from the Data Owner of each bilateral transaction:
 a. From Attributes.
 b. To Attributes.
 c. Link Number.
 d. Plant.
 e. Capacity.
 f. Roll Over Rights.
 g. S0 Scalable.
 h. S5 Scalable.
 i. OASIS Comment.
 j. Comments.
 k. Related Reference.

Subsection C: MDWG scope
First paragraph here
Southwest Power Pool, Inc.

Section 2: Definitions
Subsection A: Definitions

First paragraph here—

Data Submitters (or Data Coordinators)

Summer Peak Load ((yyyySUM))—is defined as the summer peak demand expected to be served, reflecting load reductions for peak shaving. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before July 15th. Summer interchange schedules should reflect transactions expected to be in place on July 15th. Planned summer maintenance of generation and transmission should be reflected in the operating year case.

Winter Peak Load ((yyyyWIN))—is defined as the winter peak demand expected to be served, reflecting load reductions for peak shaving. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before January 15th of the following year ((yyyy + 1)). Winter interchange schedules should reflect transactions expected to be in place on January 15th. Planned winter maintenance of generation and transmission should be reflected in the operating year case.

Light Load ((yyyySLL))—is defined as a typical early morning load level, modeling at or near minimum load conditions. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before April 15. Pumped storage hydro units should either be modeled off-line or in the pumping mode, with appropriate pumping interchange schedules in place. Dispatchable hydro units should generally be modeled on-line, with run-of-river hydro on-line. Generation dispatch and interchange schedules should be commensurate with the experience of the area during such load periods, not just including firm transactions. Planned spring maintenance of generation and transmission should be reflected in this case. Summer or appropriate equipment ratings should be used.

Shoulder Peak Load (Summer) ((yyyySSH))—is defined as 70% to 80% of summer peak load conditions. Dispatchable and pumped storage hydro units should be modeled consistent with the peak hour of a typical summer day with run-of-river hydro on-line. Generation dispatch and interchange schedules should be commensurate with the experience of the area during such load periods, not just including firm transactions. Summer or appropriate equipment ratings should be used.

Spring Peak Load ((yyyySPR))—is defined as typical spring peak load conditions. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before April 15 during such load periods. Planned spring maintenance of generation and transmission should be reflected in this case. Summer or appropriate equipment ratings should be used. Pumped storage hydro units should be generally modeled on-line, but not necessarily at full generating capacity (generally not pumping). Dispatchable hydro units should generally be modeled on-line, but not necessarily at maximum generation, and run-of-river hydro should be modeled on-line. Generation dispatch and interchange schedules should be commensurate with the experience of the area.

Fall Peak Load ((yyyyFAL))—is defined as typical fall peak load conditions. Topological modeling changes shall be incorporated into the model if they are to go into effect on or before October 15 during such load periods. Planned fall maintenance of generation and transmission should be reflected in this case. Summer or appropriate equipment ratings should be used. Pumped storage hydro units should be generally modeled on-line, but not necessarily at full generating capacity (generally not pumping). Dispatchable hydro units should generally be
modeled on-line, but not necessarily at maximum generation, and run-of-river hydro should be modeled on-line. Generation dispatch and interchange schedules should be commensurate with the experience of the area.

Demand Side Management - All activities or programs undertaken by any applicable entity to achieve a reduction in Demand. See NERC Glossary of Terms, n.d.

Distributed energy resources (DER) - Power sources that can be aggregated to provide power necessary to meet regular demand.
Section 3: Data Requirements and Reporting

Subsection A: Data Requirements

Data format and content requirements required for the development of SPP Planning models is comprised of three data types: steady state, dynamics, and short circuit. Sections X, Y, Z address each data type respectively. An additional data requirements section is provided to address the modeling of planning events and remedial action schemes.

In consideration of including Planned Facilities in submitted data, the following guidelines should be followed:

- The facilities are expected to be in-service on the scheduled base case posting date.
- The facilities are expected to be in-service in the month and year represented in the model; or the facilities are required to support proposed generation facilities that are modeled in service in the model.
- The facilities expected to have a known outage of at least six months should be reflected accurately in the applicable model.

All data must be the best available data. Dynamic data resulting from equipment testing should be provided if it is available. If test data is not available then design data should be provided. If design data is not available then generic dynamic data should be provided. In-service equipment should be supported by test data while long-term planned equipment may only have generic dynamic data available.

Subsection B: Data Reporting

Data Submitter agreement document

Staff and Stakeholder accountability

The schedule and process for Data Submitters to follow when submitting data to SPP is outlined in the initial data request schedule document from SPP.

Responsible Entities

Data Submitters are responsible for providing the data necessary to model their assets to its Transmission Planner(s) and Planning Coordinator(s) as described in this document. Data Submitters and their respective data submission responsibilities are noted in the NERC standard MOD-032-1.

- Generator Owners (GO) and Resource Planners (RP) are responsible for submitting modeling data for their existing and future generating facilities respectively.
- Load Serving Entities (LSE) are responsible for submitting modeling data for their existing and future load corresponding to the case types developed.
- Transmission Owners (TO) are responsible for submitting modeling data for their existing and future transmission facilities.
- The Planning Coordinator or Transmission Planner can request other information necessary for modeling purposes from the BA, GO, LSE, TO, or TSP.

Subsection C: Confidentiality and Model Accessibility

CEII and NDA stuff

The schedule and process for Data Submitters to follow when submitting data to SPP is outlined in the initial data request schedule document from SPP.
Steady-State Data Requirements

Subsection A: Overview

Steady-State models are developed for an annual series of SPP cases, including an annual series of ERAG MMWG cases. Specific models are prepared and modified for use in SPP designated studies as required by SPP Regional Tariff and Criteria.

The data listed in Attachment 1 of the NERC Standard MOD-032-1 located on the NERC website. MOD data should be kept current for each pass during the MDWG model build.

The Data Submittal Workbook tabs should be kept current for each pass during the MDWG model build including the items below.

Transactions and tie line modifications shall be coordinated with neighboring systems.

Known outage(s) of Generation or Transmission Facility(ies) with a duration of at least six months.

Lines and Transformers operated as normally open shall be reported in the Normally Open Lines tab of the Data Submittal Workbook.

Steady-State Data Format

PSS®E and MOD Users

The transmission modeling software approved by the SPP membership for performing planning and reliability studies is the Power Technologies Incorporated, Power System Simulator for Engineering (PSS®E) software. Data submitted for the building of the base SPP MDWG case types (models) needs to be in a format consistent with that used in PSS®E. The data shall be submitted via the SPP Models On Demand (MOD) Web Portal. Data submitted should be compatible with the MOD and PSS®E versions currently specified by SPP.

Non-PSS®E and Non-MOD Users

For those non-PSS®E users, load and generation profile data may be submitted via the Profile Submission form provided by SPP. SPP will aid with the submission of all other steady-state data in the correct PSS®E and MOD data formats. Any version changes will be discussed in the annual training provided by SPP.

Subsection B: Generation

Conventional Generation

Priority: Renewable Generation

ECIDI Dispatch

Distributed Energy Resources (DERs)

Subsection C: Load

Load forecasting

Load forecasting methodologies vary throughout the electric industry. SPP depends on load forecasts from Data Submitters to apply to the planning models. These load forecast values are to be Non-Coincident to the SPP region, meaning that the hour that a Data Submitter’s system experiences a peak demand for a particular season, might not be the same hour that SPP, as a region, experiences a peak demand. In order to bring consistency and equivalency to the load forecast data submitted to SPP, load forecast data shall be based on a 50/50 forecast.

A 50/50 load forecast relates to a forecasted load amount having an equal probability of being either higher or lower than the amount forecasted. The forecasted load value is at the 50th percentile of a normal distribution curve and is typically discussed in terms of exceedance such that there is a 50% probability that the load forecast will be exceeded due to abnormal weather. For a 90/10 load forecast there is a 10% probability that the load forecast will be exceeded due to more extreme weather, which means the load forecast amount is higher than a 50/50 load forecast amount. There are various methods used to develop such forecasts and the forecasts are dependant upon many factors such as historical load values, temperature, humidity, economic forecasts, time of day, day of week, holidays, special events, and load uncertainty. Other factors,
some of which are controllable, also impact the amount of forecasted load. Demand Side Management and Distributed Energy Resources are such factors.

Demand Side Management consists of activities or programs that an entity enrolls to achieve a reduction in Demand. Distributed Energy Resources are power resources on the distribution system that can be aggregated together to provide power to meet Demand. For purposes of transmission planning, neither Demand Side Management nor Distributed Energy Resources should be applied to a Data Submitter’s load forecast amount for incorporation into the SPP planning models.

Summary of Data Submitter’s load forecast data comprised:

50/50 load forecast
Load forecast amount does not include Demand Side Management
Load forecast amount does not include Distributed Energy Resources

Priority:

First paragraph here

Probability Distribution Curve, example

Consideration of BTM

Auxiliary loads

Dynamic load

Subsection D: Transformers

2-Winding Transformers

3-Winding Transformers

Connection Codes [consider SC / TPL-007-1 implications]

Priority: Phase Shifting Transformers

Subsection E: Fixed Shunt Reactive Elements

First paragraph here

Subsection F: Controlled Shunt Reactive Devices

First paragraph here

Subsection G: AC Transmission Lines

First paragraph here

Subsection H: AC and DC Buses

First paragraph here

Subsection I: DC Ties and DC Transmission Lines

First paragraph here

Subsection J: Area Interchange Schedules

First paragraph here

Engineering Hub

Commented [MO30]: Should this be specific to transmission planning? For Resource Adequacy purposes, some entities (like GSEC) want to reduce their peak demand by their DSM. This reduction can be calculated since the amount of DSM is submitted to SPP through the RAW.

Formatted: Font: 11 pt

Commented [MO31]: PJM: Baseline Thermal analysis: The PJM Load Forecast uses a 50/50 distribution. Demand Response is not considered in the Load Forecast. MISO:

Formatted: Font: 11 pt
Section 5: Dynamic Data Requirements
Subsection A: Overview
The MDWG Dynamic Models include full MMWG cases and machine reduced cases. The initialized no-fault models can be solved with quarter-cycle and half-cycle time steps. The MDWG Dynamic model Update is used to support SPP reliability studies and ERAG MMWG Dynamic model requirements. It is important for all generating entities that interconnect to the SPP transmission to support the Regional Transmission Organization with current detailed dynamics data in the proper SPP model format. The current MDWG Dynamic Model Format is PSS®E dynamics DYRE and RAWD formats.

Dynamic Data Format
PSS®E Users
Dynamics data needs to be submitted in the form of a flat text file or dyre file compatible with Siemens PTI PSS®E software. Dyre file submittals can be of changes to individual components from the existing dyre entries or of entire new representation of machines. Dynamic ready models are developed using the PSS®E software program. The data should be submitted via TrueShare or email. Data submitted must be compatible with the PSS®E version currently specified by SPP.

Non-PSS®E Users
Dynamics data needs to be submitted in the form of a flat text file or dyre file compatible with Siemens PTI PSS®E software. Siemens PTI PSS®E software contains dyre file models for most conventional machines, exciters, governors, SVCs, HVDC ties, wind resources, and solar resources. SPP Engineering Modeling staff will work with the responsible entity or its designee to translate operational test data into the appropriate dyre file format compatible with the PSS®E version currently specified by SPP.

Stakeholders are expected to contact the SPP Engineering Modeling Staff if there are any additional questions regarding the data format.

Subsection B: Generation Requirements
Gen stuff

Wind Farm modeling

Subsection C: Load Characteristics
Load stuff

Dynamic Load Models
Subsection D: Underfrequency Load Shedding (UFLS)
Load shed stuff
Subsection E: Undervoltage Load Shedding (UVLS)
Load shed stuff