SPP PC UFLS Plan

Planning Coordinator: Charles Hendrix
Published: 9/30/2015
Revised: 9/27/2019
Version: 4.5

Approved By: [Signature]
9/27/2019
SME Signature Date

Approved By: Charles Hendrix
9/27/2019
Planning Coordinator Signature Date

SPP Southwest Power Pool
Revision History

<table>
<thead>
<tr>
<th>Date or Version Number</th>
<th>Author</th>
<th>Change Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/2/2013</td>
<td>SPCWG</td>
<td>Rev. 0</td>
<td>Initial draft</td>
</tr>
<tr>
<td>7/16/2013</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 1</td>
<td>MOPC approved SPCWG’s Recommendation to endorse the UFLS Plan from the Consent Agenda</td>
</tr>
<tr>
<td>6/03/2014</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 2</td>
<td>Incorporated RCWG revisions. Added Appendices A-E. Grammatical and formatting edits.</td>
</tr>
<tr>
<td>6/20/2014</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 2.1</td>
<td>RCWG, SPCWG, UFLS Entities comments</td>
</tr>
<tr>
<td>6/24/2014</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 3</td>
<td>For final RCWG, SPCWG recommendations</td>
</tr>
<tr>
<td>10/21/2014</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 3.1</td>
<td>Stakeholder process cleanup. Section 6.0 – UFLS Program < 100MW: specified frequency setpoints. Appendix B – UFLS Data: enhanced instructions.</td>
</tr>
<tr>
<td>8/18/2015</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 4</td>
<td>For final SPCWG recommendations. Definition for UFLS Entity modified to include PC authority to require an Entity to install UFLS equipment. Posted for comment. Inclusion of PRC-006-2 “Corrective Action Plan” changes. Nonmaterial change in Section 9.0: change “survey form” to “the Attestation Form” to clarity which form is uploaded.</td>
</tr>
<tr>
<td>9/30/2015</td>
<td>SPP Planning Coordinator</td>
<td>Rev. 4.2</td>
<td>Language cleanup “TO, DP” language to include “TO, DP, and GO” (PRC-006-2, R4.1 through R4.6).</td>
</tr>
<tr>
<td>Date</td>
<td>Revision</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>7/13/2016</td>
<td>Rev. 4.3</td>
<td>Presented to SPCWG. Language cleanup. Remove RCWG in 17.3 since the SPP PC UFLS Plan review RCWG Action Item is completed. Copy PRC-006-2.R3 into UFLS Plan, Section 3.0. Section 5.0, generator auxiliary load exclusion from imbalance equation. Update Appendix B, "UFLS Data". Remove from Appendix C, "Changes to boundaries of a specific island are identified". Update Appendix E, "Reporting Instructions".</td>
<td></td>
</tr>
<tr>
<td>9/30/2016</td>
<td>Rev 4.3</td>
<td>Considered comments from July 13, 2016 SPCWG Meeting. G.O. responsibilities from Section 10 to Section 9. Time allowed for response to data request is changed to 60 days. Final.</td>
<td></td>
</tr>
<tr>
<td>8/16/2018</td>
<td>Rev. 4.4</td>
<td>Made changes to the plan to clarify that DPs are UFLS entities if they have UFLS relays. Also made changes to section 17 regarding how to modify the UFLS plan and made changes removing the "-2" on the end of the standard. Replaced all references to TrueShare with the corresponding references to GlobalScape. Removed references to Special Protection Systems (SPS) and renamed it to Remedial Action Schemes (RAS).</td>
<td></td>
</tr>
<tr>
<td>2/26/2019</td>
<td>Rev. 4.5</td>
<td>Added the SPS/Xcel Study Island</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Revision
History

2

Introduction

7

SPP PC UFLS
Plan

8

Section 1.0 - Study Island Identification (R1) .. 8
Section 2.0 - Island Selection (R2) ... 8
Section 3.0 - Performance Characteristics (R3, R10) 8
 3.1 Frequency Performance Characteristics (R3) ... 8
 3.2 Volts/Hz (V/Hz) limits (R3) .. 9
3.3 Automatic switching of equipment for over-voltage control (R10) ... 9
Section 4.0 – PC Coordination (R5 and R7) ... 9
 4.1 Island and Program Design (R5) ... 9
 4.2 Data (R7) ... 10
Section 5.0 - UFLS Program > 100MW (R8) .. 10
Section 6.0 – UFLS Program < 100MW (R8) ... 10
Section 7.0 – Islanding Schemes ... 11
Section 8.0 – Technical Assessment ... 11
Section 9.0 – TO, DP, and GO Data Submittal (R6) ... 11
 9.1 Attestation Form .. 11
 9.2 UFLS Data (R6) ... 12
 9.3 SPP PC UFLS Contact ... 12
 9.4 TO/DP GO Contact and Changes ... 12
 9.5 SPP PC Planning Model ... 12
Section 10.0 – Reserved .. 13
Section 11.0 – Generator Owner Trip Verification ... 13
Section 12.0 – Supplemental Load Shedding ... 13
Section 13.0 – Implementation of Supplemental Load Shedding 13
Section 14.0 - Data Coordination with other Planning Coordinators (R7) 13
Section 15.0 – Post Event UFLS Plan Design Assessment (R11-12, R15) 14
Section 16.0 – Post Event Island Assessment Coordination (R13) 14
Section 17.0 – Plan Change Coordination (R12) .. 14
 17.1 Modification .. 14
 17.2 Appeal Process .. 15
 17.3 Comment Period ... 15
Section 18.0 – Notifications (R3) ... 15
Section 19.0 – Schedule for Implementation (R3) ... 16
Section 20.0 – Corrective Action Plan (R15) ... 16

Appendices ..

.. 17
Appendix A – SPP UFLS Plan Contacts ... 17
Appendix B – UFLS Data ... 18
 info (tab) in the UFLS Entity Inventory DB: ... 18
 Details {tab} in the UFLS Entity Inventory DB: 19
 Definitions (tab) in the UFLS Entity Inventory DB: 20
Appendix C – Schedule for Implementation ... 22
 SPP Underfrequency Load Shedding (UFLS) Plan Implementation Schedule ... 22
Appendix D – Attestation Form (Example) ... 23
Appendix E – Reporting Instructions ... 24
 Data Posting.. 25
 Subject Matter Expert (SME) .. 25
 Attestation Form ... 25
 Dynamic Stability Model ... 25
 UFLS Model DB .. 26
 Entity UFLS Inventory DB .. 26
Introduction

The Southwest Power Pool Planning Coordinator (SPP PC) Automatic Underfrequency Load Shedding Plan (UFLS Plan) is designed to develop, coordinate, and document requirements for automatic underfrequency load shedding (UFLS) programs to arrest declining frequency and to assist with the recovery of frequency following underfrequency events. In order to evaluate the UFLS Plan, the SPP PC will collect UFLS data annually and perform the design assessment at least once every five years.

The SPP PC UFLS Plan applies to Generator Owners (GO) and UFLS entities. UFLS entities are entities responsible for the ownership, operation, or control of UFLS equipment as required by the UFLS program established by the PCs. Such entities may include one or both of the following: Transmission Owners (TO) and Distribution Providers (DP). This UFLS Plan requires annual updates to the UFLS data by UFLS entities.

An SPP PC UFLS entity can be either a TO or a DP. A DP that is considered a UFLS entity will generally meet the following conditions:

- Owns and operates (armed) automatic UFLS equipment to arrest frequency decline for UFLS events defined by PRC-006.
- Has total DP load greater than or equal to what is specified by NERC in the most current Statement of Compliance Registry Criteria for a Distribution Provider. DPs under the load threshold specified by NERC will also be subject to the UFLS Plan if they own and operate UFLS equipment in the SPP PC footprint.

A TO that is considered a UFLS entity will meet the following condition:

- Owns and operates (armed) automatic UFLS equipment to arrest frequency decline for UFLS events defined by PRC-006 in the SPP PC footprint.

UFLS entities seeking changes to the status of their UFLS equipment shall coordinate with TOs/DPs that are directly impacted by the operation of UFLS equipment and obtain SPP PC approval.

New entities being added to the SPP PC footprint who qualify as UFLS entities based on the criteria above shall coordinate their UFLS equipment data with the SPP PC UFLS contact and adhere to the SPP PC UFLS implementation schedule Appendix C. These new Entities shall also coordinate with TOs/DPs that are directly impacted by the operation of UFLS equipment if applicable.

The SPP PC may require TOs, DPs, and GOs within its Island(s) to install UFLS relays based on the Island(s) need to meet NERC PRC-006 as a result of an event, study, and or mitigation plan.
Section 1.0 - Study Island Identification (R1)

R1 requires criteria be specified for the selection of a study island. The SPP PC will examine historical events as well as conduct future studies to determine the adequacy of its UFLS system. When the SPP PC has evidence to warrant investigation of including more than one UFLS island, it will coordinate the analysis with the System Protection and Control Working Group (SPCWG), UFLS entities, and other affected PCs to develop a subsequent UFLS Plan to meet NERC PRC-006.

Section 2.0 - Island Selection (R2)

The SPP PC has identified two islands to serve as a basis for designing its UFLS program. The islands are identified as follows:

- The SPP PC Island (less Southwestern Public Service (SPS/Xcel))
- The SPS/Xcel Island

The SPP PC Island was selected by considering the following:

- Those islands selected by applying the criteria in Section 1.
- Any portions of the bulk electric system (BES) designed to detach from the Interconnection (planned islands) as a result of the operation of a relay scheme or Remedial Action Scheme.
- A single island that includes all portions of the BES in either the Regional Entity area or the Interconnection in which the PC’s area resides. If a PC’s area resides in multiple Regional Entity areas, each of those Regional Entity areas will be identified as an island. PCs may adjust island boundaries to differ from Regional Entity area boundaries by mutual consent where necessary for the sole purpose of producing contiguous regional islands more suitable for simulation.
- System studies.
- Changes to the PC island boundary.
- Review of historical events.

The SPS/Xcel Island was selected by considering the following:

- Request of SPS/Xcel after review of historical events that indicated past UFLS events in the SPS/Xcel area as recently as 2008.

Section 3.0 - Performance Characteristics (R3, R10)

3.1 Frequency Performance Characteristics (R3)

As a part of the SPP PC UFLS evaluation, frequency shall remain within the under-frequency and over-frequency range of the curve in Attachment 1, either for 60 seconds or until a steady-state condition between 59.3 Hz and 60.7 Hz is reached (R3 requirements related to 3.1 and 3.2 of the standard).
3.2 Volts/Hz (V/Hz) limits (R3)

As a part of the SPP PC UFLS evaluation, V/Hz for all SPP PC UFLS entities’ generators at a generator terminal bus and/or a generator step-up (GSU) transformer high-side bus will be studied. This study is performed to assess generators and transformers magnetic flux during a 25% generation loss scenario. The actual magnitude of magnetic flux in the generator stator or transformer core is difficult to measure; however, it can be quantified in terms of per unit V/Hz, since the operating magnetic flux in electric machines is proportional to the ratio of the operating voltage to the electrical frequency. Therefore, V/Hz provides a measure of generator stator and transformer core magnetic flux. Excessive magnetic flux in the transformer or generator results in thermal damages to the generator and GSU transformer. These damages are typically cumulative and include, but are not limited to, generator stator and GSU transformer core damage and degradation of insulation material. Excessive magnetic flux may also cause unwanted operation of protection system. The objective of the study is to identify generator terminal or GSU transformer high-side buses for which V/Hz exceeds stipulated values of 1.18 PU for longer than two seconds cumulatively, or 1.1 PU for longer than 45 seconds cumulatively for the simulated event of 25% generation loss scenario.

Therefore, Volts per Hz (V/Hz) will not exceed 1.18 per unit for longer than two seconds cumulatively per simulated event and will not exceed 1.10 per unit for longer than 45 seconds cumulatively per simulated event at each generator bus and generator step-up transformer high-side bus associated with each of the following:

- Individual generating units greater than 20 MVA (gross nameplate rating) directly connected to the bulk electric system (BES).
- Generating plants/facilities greater than 75 MVA (gross aggregate nameplate rating) directly connected to the BES.
- Facilities consisting of one or more units connected to the BES at a common bus with total generation above 75 MVA gross nameplate rating.

3.3 Automatic switching of equipment for over-voltage control (R10)

The SPP PC has not identified the need to require Transmission Owners (TO) to provide automatic switching of its existing equipment (capacitor banks, Transmission Lines, and reactors) to control over-voltage as a result of Underfrequency load shedding. When the SPP PC has identified the need to require Transmission Owner to provide automatic switching of its existing equipment to control over-voltage as a result of Underfrequency load shedding the SPP PC will notify the TOs of the effective date to implement this section of the SPP PC UFLS Plan. The TO will follow the Schedule for Implementation, Appendix C, upon notification by the SPP PC.

Section 4.0 – PC Coordination (R5 and R7)

4.1 Island and Program Design (R5)

When multiple PCs are included in the SPP PC UFLS island, SPP, as the PC, will coordinate its UFLS program design with adjacent PCs whose areas or portions of whose areas are also part of the same identified island through one of the following:

- Develop a common UFLS program design and schedule for implementation among the PCs whose areas or portions of whose areas are part of the same identified island; or
• Conduct a joint UFLS design assessment at least every five years among the PCs whose areas or portions of whose areas are part of the same identified island; or

• Conduct an independent UFLS design assessment per the SPP PC UFLS Plan, and if the assessment fails to meet SPP PC UFLS Plan, identify modifications to the UFLS program(s) to meet the SPP PC UFLS Plan and report these modifications as recommendations to the other PCs whose areas or portions of whose areas are also part of the same identified island and the ERO.

4.2 Data (R7)

The SPP PC will provide its UFLS database containing data necessary to model its UFLS program to other PCs within its Interconnection within 30 calendar days of a request for data.

Section 5.0 - UFLS Program > 100MW (R8)

Each UFLS entity that has a total forecasted peak Load as specified in the annual data request (see Appendix B) greater than or equal to 100 MW will develop and implement an automatic UFLS program that meets the following requirements:

• A minimum of 10% will be shed at each UFLS step in accordance with the table below.

<table>
<thead>
<tr>
<th>UFLS Step</th>
<th>Frequency (hertz)</th>
<th>Minimum accumulated load relief as percentage of forecasted peak Load (%)</th>
<th>Maximum accumulated load relief as percentage of forecasted peak Load (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>59.3</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>59.0</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>58.7</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

• The intentional relay time delay for UFLS will be less than or equal to 30 cycles.

• There is no minimum total clearing time (relay operating time + breaker trip time).

• Undervoltage inhibit setting will be less than or equal to 85% of nominal voltage.

UFLS entities may implement an aggregated UFLS program with other UFLS entities. The 100 MW limit refers to the aggregated plan, if one exists.

Generator auxiliary load is excluded from the “load” in the imbalance equation of R3, “Imbalance = [load – actual generation output] / (load)”. An Entity may exclude auxiliary load in the imbalance equation if the auxiliary load is modeled in the UFLS powerflow model.

Section 6.0 – UFLS Program < 100MW (R8)

Each UFLS entity that has a total forecasted peak Load as specified in the annual data request (see Appendix B) less than 100 MW will develop and implement an automatic UFLS program that meets the following sections:

• A minimum of one UFLS step with the frequency set point that can be any of the following: 59.3 Hz, 59.0 Hz, or 58.7 Hz. If the current frequency set point is not 59.3 Hz, 59.0 Hz, or 58.7 Hz then the UFLS Entity will change the set point to the nearest of 59.3 Hz, 59.0 Hz, or 58.7 Hz per the SPP PC UFLS Schedule of Implementation.

• The minimum accumulated Load relief will be at least 30% of the forecasted peak Load.
- The intentional relay time delay for UFLS will be less than or equal to thirty (30) cycles.
- Undervoltage inhibit setting will be less than or equal to 85% of nominal voltage.
- UFLS entities may implement an aggregated UFLS program with other UFLS entities. The 100 MW limit refers to the aggregated plan, if one exists.

Generator auxiliary load is excluded from the “load” in the imbalance equation of R3, “Imbalance = [load – actual generation output] / (load)”. An Entity may exclude auxiliary load in the imbalance equation if the auxiliary load is modeled in the UFLS powerflow model.

Section 7.0 – Islanding Schemes

Each UFLS entity electing to use underfrequency islanding schemes will design those islanding schemes to operate after all three steps of UFLS have been exhausted and the frequency continues to fall to 58.5 Hz or below. For islanding schemes designed to operate at or between 58.5 Hz and 58.0 Hz, the minimum time delay will be two seconds. For islanding schemes designed to operate below 58.0 Hz, no time delay is required.

Section 8.0 – Technical Assessment

The PC will perform and document a UFLS technical assessment according to NERC Standard PRC-006.

Section 9.0 – TO, DP, and GO Data Submittal (R6)

The PC will annually request the completion of an Attestation Form and UFLS data from each registered TO, DP, and GO in its PC area. Each TO, DP, and GO will provide the requested information to the PC within 60 calendar days. The Attestation Form is in Appendix D. Details on the UFLS data are in Appendix B.

For those entities with GlobalScape access upload the Attestation Form to:

https://sppdocushare.spp.org/EFTClient/Account/Login.htm/

- "Individual TO, DP, and GO by NCR number" (sub-folder, i.e. "CAS_AEP (NCR01056)”).

- PRC-006

 - Applicable Year

Example: The DP “ABC” will post their signed Attestation Form and Inventory Spreadsheet in the sub-folder “ABC” within GlobalScape.

For those entities without GlobalScape access submit survey form via email to:

The UFLS subject matter expert, see Appendix A.

9.1 Attestation Form

The Attestation Form will state the Submission Period (example, Annual submittal for 2018) and the required Reporting Period (example, October 1 through November 30, 2018) for each applicable Entity (by individual NCR number) to complete the form and if applicable supply the UFLS data to the PC. The responding Entity will complete the Form by checking all the following items that apply:

- Entity is a Transmission Owner.
• Entity is a Distribution Provider.
• Entity is a Generator Owner.
• Entity owns Automatic Underfrequency Load Shedding (UFLS) Relay(s).
• Entity does not own any UFLS Relays.
• Entity owns Automatic Load Restoration (ALR) Relay(s). (Req. 4.7).
• Entity does not own any ALR Relays.
• Entity owns frequency generation protection equipment.

The Entity must sign and complete the remainder of the form.

9.2 UFLS Data (R6)

The UFLS data is necessary to model the SPP PC UFLS program for use in event analysis and assessments of the UFLS program. The data and format for the data will be reviewed by the SPCWG. Requirements for the UFLS Data are specified in the data request. Requirements for the UFLS Data or database are in Appendix B.

9.3 SPP PC UFLS Contact

If GlobalScape access is denied by an entity, the entity is to submit the UFLS Data and Attestation Form via email to the SPP PC UFLS Subject Matter Expert (SME), see Appendix A.

9.4 TO/DP/GO Contact and Changes

The SPP PC requires a registered TO/DP/GO in the PC to provide at minimum the Compliance Contact. Changes or additions to the TO/DP/GO contact(s) should be submitted via email to the SPP PC SME, Appendix A.

9.5 SPP PC Planning Model

The SPP PC typically uses the data submittal year plus one (1) Summer Peak planning stability model and power flow model to perform required UFLS Plan assessment. The location of the model will be specified in the data request.

Percentage of UFLS Entity load shed is based on that entities’ total load in the specified model.

Example 9.5.1: The October 2018 UFLS request based UFLS load shed amount on the SPP Model Development Working Group (MDWG) 2018 Series, Summer Peak 2019 case.

Registered TO/DPs submitting UFLS data on behalf of their members will group the data in such a way as to clearly identify compliance with the UFLS Plan.

Example 9.5.2: A TO who report UFLS data for multiple DP’s might show an unbalanced mixture of DP’s loads being shed in each UFLS Step 1, 2, and 3 while each step meets the 10% total trip requirement. UFLS data can be grouped by DP’s within each Step with subtotals of percent load shed by group within the Step.

Access to the models is controlled through CEII. If you require access to these models please contact the SPP UFLS Plan SME, Appendix A.
Section 10.0 – Reserved

Section 11.0 – Generator Owner Trip Verification

Each Generator Owner will verify that their generating unit(s) will not trip above the generator underfrequency curve and will not trip below the generator overfrequency curve in NERC PRC-006 Attachment 1 as a result of the unit(s) frequency protective relay settings.

For generating units with operating characteristics that limit the unit’s ability to perform in accordance with this requirement, the Generator Owner will provide to the PC technical evidence demonstrating that the unit cannot operate within the specified frequency range without causing equipment damage or violating manufacturer’s published equipment ratings.

PRC-006 Requirements 4.1 through 4.6 requires SPP to consider and model protective relays for generators that trip in the “no trip zone” defined in the diagram during the development of SPP UFLS Program. The diagram in PRC-006 Attachment 1 shows the “no trip zone” as the area between the two outside curves. At a minimum, during the UFLS design assessment SPP PC will simulate generator protection systems that trip generation when frequency is in the “no trip zone”. This action applies to units that are identified in PRC-006 Requirements 4.1 through 4.6.

Section 12.0 – Supplemental Load Shedding

The PC will determine if the Generator Owner has provided technical evidence demonstrating the unit cannot operate within the specified frequency range without causing equipment damage or violating manufacturer’s published equipment ratings.

The PC will determine if the UFLS program performance is degraded due to the removal of any generation identified in accordance with Section 11 and verified in accordance with Section 11.

If the PC determines the UFLS program is degraded in accordance with Section 11 and supplementary load shedding is, therefore, required, the PC will notify the Generator Owner or UFLS entity(s) in accordance with the following:

- Where the Generator Owner is a UFLS entity and has the required amount of supplementary load available, the PC will notify the Generator Owner of load the entity is required to shed (in addition to that required in accordance with Section 5 and Section 6).
- Where the Generator Owner is not a UFLS entity, or does not have the required supplementary load available for shedding, the PC will notify any other UFLS entity(s) within the PC’s area of load the entity(s) is required to shed (in addition to that required in accordance with Section 5 and Section 6).

Section 13.0 – Implementation of Supplemental Load Shedding

The Generator Owner or other UFLS entity(s) will implement supplementary shedding of load required by the PC in accordance with Section 12.

Section 14.0 - Data Coordination with other Planning Coordinators (R7)

SPP PC will provide its UFLS database containing data necessary to model its UFLS program to other PCs within its Interconnection within 30 calendar days of a request for data.
Section 15.0 – Post Event UFLS Plan Design Assessment (R11-12, R15)

The SPP PC, in whose area a BES islanding event results in system frequency excursions below the initializing set points of the UFLS program, will conduct and document an assessment of the event within one year of event actuation to evaluate the performance of the UFLS equipment and the effectiveness of the UFLS program.

When UFLS program deficiencies are identified, the SPP PC will conduct and document a UFLS design assessment within two years of event actuation to consider the identified deficiencies, see Section 20.

Section 16.0 – Post Event Island Assessment Coordination (R13)

The SPP PC, in whose area a BES islanding event occurred that also included the area(s) or portions of area(s) of other PCs in the same islanding event and that resulted in system frequency excursions below the initializing set points of the UFLS program, will coordinate its event assessment with all other PCs whose areas or portions of whose areas were also included in the same islanding event through one of the following:

- Conduct a joint event assessment among the PCs whose areas or portions of whose areas were included in the same islanding event; or
- Conduct an independent event assessment that reaches conclusions and recommendations consistent with those of the event assessments of the other PCs whose areas or portions of whose areas were included in the same islanding event; or
- Conduct an independent event assessment and where the assessment fails to reach conclusions and recommendations consistent with those of the event assessments of the other PCs whose areas or portions of whose areas were included in the same islanding event, identify differences in the assessments that likely resulted in the differences in the conclusions and recommendations and report these differences to the other PCs whose areas or portions of whose areas were included in the same islanding event and the ERO.

Section 17.0 – Plan Change Coordination (R12)

Changes to the SPP PC Plan could be initiated by a UFLS study, UFLS event, identified deficiency in the Plan, TO or DP changes in the PC footprint, or UFLS entity requests. UFLS entities may request changes to the SPP PC UFLS Plan through the SPCWG and the PC. Communication to the SPCWG is through the SPCWG Secretary and Chair. The SPCWG contact information is on the SPP corporate web site: www.spp.org > Organizational Groups.

Appeals on the UFLS Plan may be brought to the PC and the SPCWG. If the appeal(s) is accepted by the PC, SPP staff will revise the UFLS Plan and resubmit the revised plan to SPCWG for review.

17.1 Modification

- UFLS entities and Transmission Owners within its Planning Coordinator area may request changes to the SPP UFLS Plan through the SPCWG and the SPP PC. Modifications to the UFLS Plan may be made by the PC.
- The SPP PC may designate TO/DP/GO(s) within its PC footprint to meet performance requirements under the SPP PC UFLS Plan per PRC-006.
- The Reliability Compliance Working Group (RCWG) may request changes to the UFLS Plan.
• UFLS entities seeking changes to the status of their UFLS equipment shall coordinate with TOs/DPs that are directly impacted by the operation of UFLS equipment and obtain SPP PC approval.

• The SPP PC may require TOs, DPs, and GOs within its Island(s) to install UFLS relays based on the need to meet NERC PRC-006 as a result of an event, study, and or mitigation plan.

• The SPP PC will consider and respond to all written comments and will approve appropriate changes to the Plan at its discretion. The SPP PC is the final authority in Plan changes.

• The SPCWG will review changes to the SPP PC UFLS Plan.

• Conflicts that arise in SPP PC changes to the UFLS Plan and UFLS entities will be resolved by the SPCWG.

• The Appendices contain information that aids in supporting the SPP PC UFLS Plan. This information may require changes that facilitate the program implementation that should not require SPCWG review. Examples of these changes could include contacts or data formats related to UFLS Data. These changes will be reviewed by the SPCWG Chair. Significant changes to the SPP PC UFLS Plan will follow the above Modification procedures.

17.2 Appeal Process

Appeals on the UFLS Plan may be brought to the PC and the SPCWG. If the appeal(s) is accepted by the SPP PC, SPP staff will revise the UFLS plan and resubmit the revised plan to the SPCWG for review.

17.3 Comment Period

The SPP PC will provide a comment period of 15 days and respond to comments from its UFLS entities, TO, DP, and GOs on changes to the SPP PC UFLS Plan. The revised SPP UFLS Plan will be posted on www.spp.org, in Organization Groups, System Protection and Control Working Group, SPCWG Documents. Notification will also be sent to the SPCWG (Members Only), Primary and Secondary Compliance contacts, and the UFLS entities email lists.

Section 18.0 – Notifications (R3)

The SPP PC Plan notifications are by email to SPP PC registered TO, DP, and GOs. The notification will:

• Include the UFLS data submittal 60-day open and close dates.

• Reference the applicable SPP UFLS Plan.

• Include the applicable Implementation Schedule, Appendix C.

• Include Reporting Instructions, Appendix E, which provide details on how the TO/DP/GO is to post and complete data for the request.

• Include the applicable Attestation Form, Appendix D, for the TO/DP/GO to complete and post per the Reporting Instructions.

• Provide location and access instructions to the UFLS Plan Database, Appendix B, also known as the Inventory Spreadsheet.
Section 19.0 – Schedule for Implementation (R3)

The initial Schedule for Implementation of the SPP PC UFLS Plan was based on the MOPC approved Plan, July 16, 2013 UFLS Plan, see Appendix C. The Schedule for Implementation will be updated as required by NERC applicable standards or by the SPP PC to reflect changes to the SPP UFLS Plan.

Section 20.0 – Corrective Action Plan (R15)

Should the design assessment performed after an event reveal a UFLS deficiency, the PC shall develop a Corrective Action Plan within two years of the event (R12).

Should the five-year design assessment reveal a UFLS deficiency, the PC shall develop a Corrective Action Plan within five years of the design assessment (R4 and R5).
Appendices

Appendix A – SPP UFLS Plan Contacts

The SPP PC contacts are:

SPP Planning Coordinator
Manager of Compliance and Advance Studies

Subject Matter Expert (SME)
Send email to: ufls@spp.org

Compliance Contact
Compliance Engineer (Planning)

System Protection and Controls Working Group (SPCWG)
Chairman & Staff Secretary

[SPCWG Page](#)

Data Transfer
GIS Analyst Transmission Engineering & Modeling

UFLS Data Sharing site (link)

Global Scape Site

⇒ Compliance and Advanced Studies (CEII, RSD)
⇒ “Individual TO, DP, and GO by NCR number” (sub-folder)
⇒ PRC-006
⇒ Applicable Year

UFLS Model
The current UFLS Model is posted on GlobalScape with location specified in data request.

Access to the models is controlled through CEII. If you require access to these models please contact the UFLS Plan SME in this Appendix.
Appendix B – UFLS Data

Entities (TO/DP/GO) who submit UFLS data on behalf of their Members or other UFLS Entities that own/operate UFLS equipment will complete the UFLS Entity Inventory DB and the Model DB. The Reporting Instructions (Appendix E) contains details on how to complete the databases.

The data in the UFLS Entity Inventory DB “Definitions” tab (below) contains the details for the requested data. Optional items are not required; however, they are helpful in identifying location of equipment, etc.

Info (tab) in the UFLS Entity Inventory DB:

![Image of UFLS Entity Inventory DB]

Instructions:

1. Fill in Total Entity Load on ‘Details’ sheet. This number should come from the total load summation on your Model DB workbook.
2. Verify the load shed information on the ‘Load Shed’ worksheet. Add/Remove/Modify as necessary.
3. Verify the generator shed information on the ‘Gen Shed’ worksheet. Add/Remove/Modify as necessary.
4. Verify the information on the ‘Branch Shed’ worksheet. Add/Remove/Modify as necessary.
5. Verify the information on the ‘ALR’ worksheet. Add/Remove/Modify as necessary.
Details (tab) in the UFLS Entity Inventory DB:

<table>
<thead>
<tr>
<th>Load Shed</th>
<th>Per Step</th>
<th>Per Step</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW Load Shed</td>
<td>% Load Shed</td>
<td>% Load Shed</td>
</tr>
<tr>
<td>Step 1, F1</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2, F2</td>
<td>0.0</td>
<td></td>
<td>#VALUE!</td>
</tr>
<tr>
<td>Step 3, F3</td>
<td>0.0</td>
<td></td>
<td>#VALUE!</td>
</tr>
<tr>
<td>Totals</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F1 = 59.3 Hz
F2 = 58.0 Hz
F3 = 58.7 Hz

Total Load (MW) <---- Update this value from the Model DB workbook

Minimum 10%
Minimum 20%
Minimum 30%
Definitions (tab) in the UFLS Entity Inventory DB:

<table>
<thead>
<tr>
<th>UFLS Inventory Database TAB</th>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>Entity Name</td>
<td>NERC Entity Name</td>
<td>UFLS Entity Sum of SPP Model UFLS Model real power load (MW) responsibility. Includes both UFLS load shed amount and non-UFLS load. SPP Model Entity TO/DP Total forecasted peak load (MW). This MW value is used to calculate the percent load shed per relay.</td>
</tr>
</tbody>
</table>

Load Shed

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substation Name (Optional)</td>
<td>Bus number in powerflow model where the relay senses/monitors frequency. This location may be different from the breaker location.</td>
<td></td>
</tr>
<tr>
<td>Bus Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (closing relay)</td>
<td>SPP model bus number where load is shed.</td>
<td></td>
</tr>
<tr>
<td>Bus Name (Optional)</td>
<td>SPP model bus name where load is shed.</td>
<td></td>
</tr>
<tr>
<td>Feeder Number (Optional)</td>
<td>Names of distribution feeders that trip when Model load-ID trips. Show all that apply. This data is optional.</td>
<td></td>
</tr>
<tr>
<td>Bus Number (P)</td>
<td>SPP model bus number where load is shed.</td>
<td></td>
</tr>
<tr>
<td>SPP Variable Bus Name (Optional)</td>
<td>SPP model bus name where load is shed.</td>
<td></td>
</tr>
<tr>
<td>Load ID</td>
<td>SPP model load-ID unique identifier for load on bus.</td>
<td></td>
</tr>
<tr>
<td>Breaker Number (Optional)</td>
<td>The breaker trip time in seconds - distribution, transmission, or generator. This is not total clearing time.</td>
<td></td>
</tr>
<tr>
<td>T0 (seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Service</td>
<td>Is the load in service. 1 = Yes</td>
<td></td>
</tr>
<tr>
<td>PS (MW)</td>
<td>SPP model amount of total load with ID on bus in MW.</td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed (seconds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay operating time in seconds. Includes the time required for the relay to reliably sense the frequency + intentional delay time (if any). This is not total clearing time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in Step 1 Frequency, 59.3 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in Step 2 Frequency, 59.0 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in Step 3 Frequency, 58.7 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in other frequency settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f0 (Hz)</td>
<td>Relay frequency setpoint/pickup in Hertz</td>
<td></td>
</tr>
<tr>
<td>P0, P1, P2, P3 (MW)</td>
<td>The total amount of load shed (MW) at that frequency.</td>
<td></td>
</tr>
<tr>
<td>P0 = Load Shed in Step 1 Frequency, 59.3 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 = Load Shed in Step 2 Frequency, 59.0 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2 = Load Shed in Step 3 Frequency, 58.7 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3 = Load Shed in other frequency settings.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fraction

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of load with ID shed /</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFLS Entity comments.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UFLS Inventory Database TAB</th>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>Substation Name (Optional)</td>
<td>Bus number in powerflow model where the relay senses/monitors frequency. This location may be different from the breaker location.</td>
<td></td>
</tr>
<tr>
<td>Bus Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF (closing relay)</td>
<td>SPP model bus number where load is shed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Name (Optional)</td>
<td>SPP model bus name where load is shed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeder Number (Optional)</td>
<td>Names of distribution feeders that trip when Model load-ID trips. Show all that apply. This data is optional.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus Number (P)</td>
<td>SPP model bus number where load is shed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPP Variable Bus Name (Optional)</td>
<td>SPP model bus name where load is shed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load ID</td>
<td>SPP model load-ID unique identifier for load on bus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker Number (Optional)</td>
<td>The breaker trip time in seconds - distribution, transmission, or generator. This is not total clearing time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 (seconds)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in Service</td>
<td>Is the load in service. 1 = Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS (MW)</td>
<td>SPP model amount of total load with ID on bus in MW.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed (seconds)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relay operating time in seconds. Includes the time required for the relay to reliably sense the frequency + intentional delay time (if any). This is not total clearing time.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in Step 1 Frequency, 59.3 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in Step 2 Frequency, 59.0 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in Step 3 Frequency, 58.7 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0 = Load Shed in other frequency settings.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f0 (Hz)</td>
<td>Relay frequency setpoint/pickup in Hertz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0, P1, P2, P3 (MW)</td>
<td>The total amount of load shed (MW) at that frequency.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P0 = Load Shed in Step 1 Frequency, 59.3 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1 = Load Shed in Step 2 Frequency, 59.0 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2 = Load Shed in Step 3 Frequency, 58.7 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3 = Load Shed in other frequency settings.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fraction

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of load with ID shed /</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments

<table>
<thead>
<tr>
<th>Term</th>
<th>Definitions</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFLS Entity comments.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPP PC UFLS Plan

20 | Page
UFLS Inventory

<table>
<thead>
<tr>
<th>Database Tab</th>
<th>Term</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qen Shed!</td>
<td>Substation Name (Optional)</td>
<td>Bus number in powerflow model where the relay senses/measures frequency. This location may be different from the breaker location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus Number</td>
<td>Freq sensing relay</td>
<td>This location may be different from the breaker location.</td>
</tr>
<tr>
<td></td>
<td>Bus Name (Optional)</td>
<td>Relays in powerflow model where the relay senses/measures frequency. This location may be different from the breaker location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pm (Hz)</td>
<td>Relay frequency in Hz</td>
<td>This location may be different from the breaker location.</td>
</tr>
<tr>
<td></td>
<td>Tm (sec)</td>
<td>Relay operating time in seconds includes the time required for the relay to reliably sense the frequency + intentional delay time if any.</td>
<td>Tm = 0.25 is 15 cycles. This represents typical relay operating time at this location and frequency step.</td>
</tr>
<tr>
<td></td>
<td>Tc (sec)</td>
<td>The breaker trip time in seconds = distribution, transmission, or generator. If not, this is not total clearing time.</td>
<td>Tc = 0.05 is 3 cycles. This represents typical breaker trip time at this location.</td>
</tr>
<tr>
<td></td>
<td>Unit Bus Number</td>
<td>SPP model generator unit bus number.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit Bus Name (Optional)</td>
<td>SPP model generator unit name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit ID</td>
<td>SPP model generator unit ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In Service</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pm (MVA)</td>
<td>SPP model generator real power (MVA) shed.</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>UFLS Entity comments.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Automatic Load Restoration (ALR)

<table>
<thead>
<tr>
<th>Database Tab</th>
<th>Term</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Substation Name (Optional)</td>
<td>Bus number in powerflow model where the relay senses/measures frequency. This location may be different from the breaker location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bus Number</td>
<td>(Freq sensing relay)</td>
<td>This location may be different from the breaker location.</td>
</tr>
<tr>
<td></td>
<td>Bus Name</td>
<td>(Bus Name)</td>
<td>Frequency. This location may be different from the breaker location.</td>
</tr>
<tr>
<td></td>
<td>Feeder Number (Optional)</td>
<td>Names of distribution feeders that trip when Model Load ID trips. Show all that apply. This data is optional.</td>
<td>Feeder 1 Name; Feeder 2 Name</td>
</tr>
<tr>
<td></td>
<td>ALR Freq (Hz)</td>
<td>Relay frequency setpoint/pickup in Hz for Load restoration.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALR Tm (seconds)</td>
<td>Relay operating time in seconds includes the time required for the relay to reliably sense the frequency + intentional delay time if any.</td>
<td>Tm = 0.25 is 15 cycles. This is not total clearing time.</td>
</tr>
<tr>
<td></td>
<td>Bus Number (ALR)</td>
<td>SPP model bus number where load is restored.</td>
<td>These values come directly from the 2013 UFLS data submitted and represent the sum of all feeder load restored.</td>
</tr>
<tr>
<td></td>
<td>Bus Name (ALR) (Optional)</td>
<td>SPP model bus name where load is restored.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Load ID (ALR)</td>
<td>SPP model load ID; unique identifier for load on bus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pm (MW)</td>
<td>SPP model amount of total load with ID on bus in MW.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALR Pm (MW)</td>
<td>The total amount of load restored (MW) at that frequency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALR Fraction</td>
<td>Fraction of total load with ID restored / Pm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ALR Tc (seconds)</td>
<td>The breaker trip time in seconds = distribution, transmission, or generator. This is not total clearing time.</td>
<td>Tc = 0.05 is 3 cycles. If system voltage to restore load is 69 kV and system nominal voltage is 69 kV then = 0.05 PU.</td>
</tr>
<tr>
<td></td>
<td>System voltage for load restoration (pu)</td>
<td>SPP model bus Voltage in kV / system nominal kV.</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>UFLS Entity comments.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Load Removed

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Removed</td>
<td>See tab for details</td>
<td></td>
</tr>
</tbody>
</table>

Branch Removed

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch Removed</td>
<td>See tab for details</td>
<td></td>
</tr>
</tbody>
</table>

Gen Removed

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen Removed</td>
<td>See tab for details</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C – Schedule for Implementation

SPP Underfrequency Load Shedding (UFLS) Plan Implementation Schedule

The Southwest Power Pool UFLS Plan shall be effective **October 1, 2013.**

Sections 3, 5, 6, 7, 11, 12, and 13 shall be completed by the first day of the first calendar quarter 36 months after Planning Coordinator (PC) notification.

Section 8 shall be completed within one year after the occurrence of any of the following situations:

- Performance characteristic changes to PRC-006 or the SPP UFLS Plan.
- Changes in the total load, which could require a sensitivity study.

Section 9 shall be completed within 60 calendar days from PC notification.

Section 14 shall be completed by SPP within 30 calendar days from a request for data by a PC with its interconnection.

Section 15 shall be completed by the PC and:

- An assessment shall be conducted and documented for the event within one year of event actuation to evaluate the performance of the UFLS equipment and the effectiveness of the UFLS program.
- If UFLS program deficiencies are identified as a result of the islanding event assessment, a UFLS design assessment will be conducted and documented within two years of the event.
- The PC shall provide a Corrective Action Plan and schedule of implementation for the above deficiencies.

Section 20: The PC shall provide the affected UFLS entities a schedule of implementation when a UFLS design assessment has identified a need for a Corrective Action Plan.
Appendix D – Attestation Form (Example)

UFLS Data Submittal
PRC-006-X

Reporting Period: Annual Submittal for “APPLICABLE YEAR”
Submission Period: “60 days from the receipt of the request”

Responding Entity is a:

☐ Transmission Owner ☐ Distribution Provider ☐ Generator Owner

Please mark all the following that are applicable:

☐ Entity owns armed Automatic Underfrequency Load Shedding (UFLS) Relay(s). (Entities that own UFLS Relays are required to upload a UFLS Inventory Spreadsheet. The UFLS Inventory Spreadsheet is available on GlobalScape)

☐ Entity does not own any armed UFLS Relays

☐ Entity owns armed Automatic Load Restoration (ALR) Relay(s). (Req. 4.7) (Entities that own UFLS Relays are required to upload a UFLS Inventory Spreadsheet. The UFLS Inventory Spreadsheet is available on GlobalScape)

☐ Entity does not own any armed ALR Relays

☐ Entity does own generator protective relays applicable to (Req. 4.1 through 4.6)

☐ Entity does not own generator protective relays applicable to (Req. 4.1 through 4.6)

☐ Entity owns automatic equipment (capacitor banks, Transmission Lines, and reactors) used to control over-voltage as a result of Underfrequency load shedding. (Req. 10)

☐ Entity does not own automatic equipment used to control over-voltage as a result of Underfrequency load shedding. (Req. 10)

☐ Entity reports UFLS Plan data on behalf of itself and/or its membership

☐ Entity intends to aggregate its UFLS Plan data with other registered UFLS Entities (TO/DP/GOs). The entities to be aggregated needs to be listed in the box below:

As a member of senior management (Vice President, Director, or other senior management), I am the responsible person for the oversight of the entity’s implementation of, and compliance with NERC-approved reliability standard requirements. I certify that the answers provided above are true to the best of my knowledge for the Reporting Period and Submission Period noted above.
Appendix E – Reporting Instructions

Below is the Reporting Instructions to be used as Guideline for UFLS Data requests.

Southwest Power Pool
201 Worthen Drive
Little Rock, AR 72223-4936

[Date]

All Transmission Owners, Distribution Provider, and Generator Owner Primary Compliance Contacts:

To fulfill the requirements of PRC-006, the Southwest Power Pool (SPP) Planning Coordinator (PC) will request UFLS data annually not to exceed fifteen months via GlobalScape and Email.

This document contains specific guidelines on the Under Frequency Load Shedding (UFLS) data submittal. Guidelines on completing the UFLS Inventory Database (DB) are based on SPP UFLS Plan, Section 9 – UFLS Entity Data Submittal & Generator Owner Data Submittal.

The SPP PC is requesting data from:

- TOs and DPs that shed load
- GOs that shed generation in the no-trip zone
- Entities that have UFLS equipment inside the SPP PC footprint
- Entities that own Armed Automatic Load Restoration (ALR) relays

This document provides instructions on completing the data request. The “Attestation Form”, “Dynamic Stability Model, “UFLS Model Database (DB)”, and “Entity UFLS Inventory DB” and are used to support the data request.

Check List

TO/DP/GO Non-UFLS Entity

☐ Post completed and signed Attestation Form.
TO/DP/GO UFLS Entity

☐ Post completed and signed Attestation Form.
☐ Post updated UFLS Model DB in Entity Folder.

Mark all owned elements on the tabs; Available Loads, Available Machines, Available Branches, Available 2-Winding Transformers, and 3-Winding Transformers by selecting the appropriate entity code from the dropdown list in column A.

☐ Post updated UFLS Entity Inventory DB in the Entity Folder.

Complete the form on the Info tab. Fill in the “Total Load” on the Details tab with the total calculated from the UFLS Model DB Details worksheet. Complete the Load Shed, Gen Shed, and ALR spreadsheets.

Data Posting

The SPP PC has a secure cloud data service, GlobalScape, for posting UFLS data requested material. TO/DP/GOs who are authorized to use this serve will post their Entity data in the Entity assigned folder.

GlobalScape

⇔ Compliance and Advanced Studies (CEII, RSD)
⇔ “Individual TO, DP, and GO by NCR Number” (sub-folder)
⇔ PRC-006
⇔ Year

Note: DO NOT post data in the root folder “CAS (Global Access)” on GlobalScape.

Example: The DP “ABC” will post their signed Attestation Form and Inventory Spreadsheet in the sub-folder “ABC” within GlobalScape.

The SPP PC entities who are restricted from using a cloud service will email their requested material to the address UFLS@SPP.org. Please use UFLS in the subject line of the email. If you have any questions please contact the SME.

Subject Matter Expert (SME)

[SME contact information goes here]

Attestation Form

All SPP PC entities shall complete, sign, and post the required Attestation Form regarding ownership of Automatic Underfrequency Load Shed (UFLS), Automatic Load Restoration (ALR) relays, generator protective relays, and/or automatic equipment used to control over-voltage as a result of Underfrequency load shedding. Also indicate if your entity reports UFLS Plan data on behalf of itself, its membership, or other TO, DP, or GOs.

Dynamic Stability Model

SPP PC is collecting UFLS data in [data collection year]. The SPP planning stability model and power flow (UFLS Model) to use for this data request is the [data collection year] Model Development Working

The UFLS Model is posted on:

GlobalScape
 ➔ Compliance and Advanced Studies (CEII, RSD)
 ➔ CAS (Global Access)
 ➔ East
 ➔ PRC-006
 ➔ Year

Note: The folder specified above contains the [data collection year +1] Summer Peak dynamics model used in the [data collection year] UFLS request for data. Access to the models is controlled through CEII. If your entity requires access to these models please send a request to UFLS@SPP.org.

UFLS Model DB

The UFLS Model DB contains the current powerflow model bus, load, machine, branch, and transformer data. The UFLS Model DB can be used as the source data to update the UFLS Inventory DB. The UFLS Model DB is posted in the CAS (Global Access) folder on GlobalScape.

The SPP PC UFLS Entities will mark all loads in the UFLS Model DB, tab “Available Loads”, by placing entity abbreviated code in column A – “Controller” for the entity that owns the relay, and column B – “Owner” for the entity that owns the load.

Note: If the load is does not have a relay the owner of the load is considered the “Controller” and “Owner”.

Example 1: Entity ABC trips entity DEF’s load. In this case both entity ABC and DEF will mark load with column A – “ABC” and column B – “DEF”.

Example 2: Entity ABC owns a load but has no relay associated. In this case entity ABC will mark the load with column A – “ABC” and column B – “ABC”.

In accordance with the most recent UFLS Plan v4.4, reporting Entities have the option of not counting generator auxiliary loads for UFLS purposes. Generator auxiliary loads that are not to be tallied shall be listed in the model database as “AUX” in the owner column. The reporting Entity shall continue to list the Entity name as the controller.

UFLS entities will also mark machines, branches, and transformers that trip per the SPP PC UFLS Plan.

Entity UFLS Inventory DB

The entity UFLS Inventory Database (DB) includes prepopulated load shed, branch shed, generation shed, and automatic load restoration data. The initial request for data should be considered draft since the data has been transformed from last year’s model to the current UFLS model. The data is posted in the assigned folder for the UFLS entity.

The UFLS entity will validate/populate the data in the Inventory DB.

INFO (INFORMATION)
Update the entity name, NERC NCR ID#, primary and secondary contact information (name, phone number, and emails address).

Details

The reported UFLS entity “Total Load (MW)” is the sum of that Entities “Total Forecasted Peak Load” as it is modeled in the “Dynamic Stability Model”. Please refer to your Model Database workbook and copy the value from the “Details” tab cell B4 into this field.

Load Shed

The initial draft version of the Inventory DB posted by SPP PC contains load shed by frequency based on the previously submitted UFLS data for your entity, i.e. 2014. The previous load values have been replaced with the current models values. If the load bus number was changed from the previous model the data will NOT appear in this spreadsheet. Also, it may be possible for new loads to have been introduced into the current model, so take care to include those as necessary. Loads that have been removed from the previous model have been removed from this spreadsheet.

Load shed amounts (P_X) are estimates from the previously submitted UFLS data and represent the sum of all distribution feeder loads tripped. The load shed at a specific frequency (F_R) is the new models load (P_I) multiplied by the fraction of the previous data submittal for that load.

\[
P_X = \text{aggregated load shed with ID at frequency setpoint.}
\]

\[
P_I = \text{load with ID in model.}
\]

\[
F_R = \text{frequency setpoint.}
\]

Check all UFLS loads. Some loads from the previous data submittal may not be included in the current powerflow model used in this update, for example the load was converted to another voltage. If you need to add loads to shed use the current Model DB load values as your reference source. Columns now exist to enter the Step Frequencies; step 1 frequency is for 59.3 HZ, step 2 frequency is for 59.0 HZ, and step 3 frequency is for 58.7 HZ.

Off nominal frequency trip settings should be entered within the closest step that is lower that the off-nominal frequency. Example: 59.1 HZ trip setting would go is step 2 and 58.8 HZ (< 58.7 HZ) would go in Step 3. Only loads shed in Step 1 through Step 3 (> = 58.7 HZ) count towards UFLS load shed per the UFLS Plan. Trip settings below 58.7 HZ go in Step 3.

Branch Shed

Refer to “Definitions” worksheet for data details. Use the Model DB to complete the Branch Information.

Gen Shed

Refer to “Definitions” worksheet for data details. Use the Model DB to complete the Gen Shed data.

Automatic Load Restoration (ALR)

Refer to “Definitions” for data details. Use the Model DB to complete the ALR data.

Definitions
This worksheet includes definitions on requested data.

Please contact the SPP PC Subject Matter Expert (SME) by phone, or by email with any questions.

Sincerely,

[SME contact information goes here]

Copy to: AO for Transmission Owners (TO), Distribution Providers (DP), and Generation Owners (GO) that are participating in SPP Underfrequency Load Shedding (UFLS) Plan.